
Computational Visual Media
https://doi.org/10.1007/s41095-0xx-xxxx-x

Research Article

A Simple And Effective Filtering Scheme For Improving Neural Fields

Yixin Zhuang1(B)

© The Author(s)

Abstract Recently, neural fields, also known as coordinate-
based MLPs, have achieved impressive results in representing
low-dimensional data. Unlike CNN, MLPs are globally con-
nected and lack local control; adjusting a local region leads
to global changes. Therefore, improving local neural fields
usually leads to a dilemma: filtering out local artifacts can
simultaneously smooth away desired details. Our solution is a
new filtering technique that consists of two counteractive op-
erators: a smoothing operator that provides global smoothing
for better generalization, and conversely a recovering operator
that provides better controllability for local adjustments. We
have found that using either operator alone can lead to an
increase in noisy artifacts or oversmoothed regions. By com-
bining the two operators, smoothing and sharpening can be
adjusted to first smooth the entire region and then recover fine-
grained details in regions overly smoothed. In this way, our
filter helps neural fields remove much noise while enhancing
details. We demonstrate the benefits of our filter on various
tasks and show significant improvements over state-of-the-art
methods. Moreover, our filter also provides better perfor-
mance in terms of convergence speed and network stability.
Code is avaialble at (https://github.com/yixin26/FINN).

Keywords Neural Fields, Neural Filter, Implicit Neural
Representation, Representation Learning

1 Introduction
Neural fields are emerging as powerful representations for
visual content [1]. They are implicit functions learned via
coordinate-based MLPs that map spatial coordinates to their
corresponding values, e.g., RGB and signed distance. Due
to the spectral bias of neural networks [2, 3], ReLU-MLPs
tend to learn the low-frequency components of signals and
require more network capacity and training time to adapt the
high-frequency components. Learning high frequencies can
be facilitated by using Fourier features to embed input coor-
dinates (FFN) [4] or by replacing ReLU activation functions

⨀ ⨀ ⨀

𝑭𝒙

Filtering Filtering Filtering

𝒙

Output

𝐏𝐄

Linear
+ ReLU

Linear +
Activation

Positional
Encoding ⨀Spherical

Normalization
Hadamard
Product

FilterCoordinate Embedding MLP

Linear

Fig. 1 We introduce a new filter for coordinate-based MLPs. It
consists of two operators, a smoothing operator, i.e., a spherical
normalization that provides global smoothing, and a recovering
operator, i.e., a linear transformation that controls local sharpening.
Promoting MLPs with either operator alone can lead to oversmooth-
ing or overfitting. The key idea is to combine the two operators so
that MLPs can adjust between smoothing and sharpening to remove
noisy artifacts while enhancing details.

with periodic functions in MLPs (SIREN) [5]. They shift the
spectral bias with frequencies that better match those of the
input data.

While very effective at fitting complicated signals, FFN and
SIREN may use frequencies that are too high, transforming
the entire space from linear/smooth to highly nonlinear.
This leads to unexpected random variations in the unseen
space between training samples and affects generalization.
To ensure global smoothing, SAPE [6] proposed to use
local frequency parameters for individual spatial locations
and learn to avoid excessively high variations around the
training samples. Meanwhile, ModSIREN [7] modulates the
frequency parameters based on the spatial grids. MFN [8]
and BACON [9] and pi-GAN [10] also adjusts the local
frequency and possibly the phase and amplification parameters
of periodic functions to better fit individual data. An example
is shown in Figure 2, where the local frequency adjustment
method (i.e., SAPE) produces results with less random noise
compared to the baseline method (i.e., FFN).
Adjusting either global or local frequency parameters in

https://github.com/yixin26/FINN

2 Yixin Zhuang

(d) Reference(a) FFN (b) SAPE (c) FINN

PSNR: 26.90dB PSNR: 27.34dB PSNR: 27.64dB

LIP: 0.108 LIP: 0.106 LIP: 0.094F F F

(e) Training samples

Fig. 2 (a) An image generated with FFN contains random noise, which is highlighted in the error map from FLIP (bottom). (b) SAPE
smooths out much of the random noise by preventing the use of excessively high local frequency parameters at any spatial position, but at the
cost of poorly fitting small structures such as clouds and roofs. (c) Our method incorporates a filter in FFN that can effectively remove much
noise while better fitting details, i.e., having fewer errors in both flat and sharp regions (which is better revealed by the heat maps). We
highlight some areas of the images in yellow and green boxes and show PSNR and FLIP at the bottom of each image. The input (e) is an
image with a resolution of 256×256 sampled regularly from (d) and the outputs are images with a resolution of 512×512.

MLPs can lead to large global changes in outputs because
MLPs are globally connected and each neuron affects all
neurons in subsequent layers. Therefore, it is not possible
to change one local area without affecting others, which
inevitably leads to a dilemma: filtering out local artifacts can
simultaneously smooth away desired details. For example,
SAPE tends to oversmooth the result (e.g., in Figure 2 the
details in the sky and on the roofs are lost), even though it
reduces a lot of noise.
Similar to how CNN use filters to control the smoothness

and sharpness of local regions, we investigate a new filtering
scheme for MLPs with similar controllability. We study
two types of filtering functions: the smoothing operator,
which reduces variations, and the recovering operator, which
increases variations. We develop the smoothing operator as
spherical normalization¬ that provides global smoothing, and
the recovering operator as a linear transformation for better
local fitting. The operators can be used in conventional MLPs
or in the aforementioned works that can manage frequencies.
Figure 1 shows the network using our filter in FFN.
The filtering effect of each operator is shown in Figure 3.

For a 1D example in (a), a small ReLU-MLP in (b) gives
inadequate results, which can be greatly improved by a recov-
ering operator in (c). Note that (b)&(c) have similar network
capacity. When fitting the same samples with FFN (d), the

¬ Spherical normalization is the normalization of inputs to the hypersphere.
We define this term to distinguish it from other normalization methods in
this context.

N
o

Fo
ur

ie
r F

ea
tu

re
s

W
ith

 F
ou

rie
r F

ea
tu

re
s

W
ith

 R
ec
ov
er
in
g

W
ith

 S
m
oo
th
in
g

(b) Underfitting Results

(a) Training samples

(c) Enhancing Details

C
oo

rd
in

at
e-

ba
se

d
M

LP

(d) Overfitting Results (e) Removing Noises

Fig. 3 A 1D toy example to illustrate the effects of smoothing
and recovering operators. When reconstructing a 1D signal (a) with
coordinate-based MLPs, underfitting (b) may occur if the capacity
of the MLPs is insufficient, or overfitting (d) may occur if too
high a frequency parameter is used in the FFN. Without increasing
network parameters or adjusting frequency parameters, the proposed
recovering operator helps to recover structures (c), and the smoothing
operator removes noisy artifacts (e).

result exhibits unexpected bumps (local high frequencies)
between nearby samples, which can be effectively removed
by the smoothing operator (e). Note that (d)&(e) use the same
global frequency parameter.

For more complicated signals, such as images and shapes,
neither operator alone can effectively remove noisy artifacts
and recover fine details. The smoothing operator ensures
that the entire space is smoothed, and is therefore unable

A Simple And Effective Filtering Scheme For Improving Neural Fields 3

to enhance fine content. Theoretically, the recovering has
more control over the variations of the coordinates, which can
perform smoothing and sharpening by reducing or increasing
the scales in the linear transformation. In practice, however, it
only has a sharpening effect to better fit the training samples,
and for the unseen space it has no intention to reduce the
variations and leave the random noise there. Therefore, with-
out a smoothing constraint, the linear transformation alone
cannot eliminate the noise in the unseen space. For example,
MFN and BACON also use a multiplicative operation (a
linear transformation) that scales local variations. This gives
them a strong performance improvement in training, but little
improvement in generalization compared to FFN and SIREN.

To adjust between smoothing and sharpening, we need both
operators together, not just one. By first smoothing the entire
region and then recovering the fine details in the oversmoothed
regions, the two coounteractive operators work together to
achieve a better fit to the training samples and also smooth
the unseen space, leading to better fitting and generalization.
Figure 2 shows the filtering effect of our method, which has
less noise and finer details than the methods without filter.

Our smoothing and recovering operators must be carefully
balanced. Since the former is parameter-free and unchanged,
the latter must be designed so that it is not too strong, which
makes the smoothing operator less effective, or too weak,
which cannot sufficiently improve the details. We will explore
different designs of the recovering operator to coordinate with
the smoothing operator.

To demonstrate the effectiveness of our filter, we designed
networks using the filter for different tasks. Experimental
results show that our method performs better than the state-
of-the-art methods. Moreover, our filter design leads to faster
convergence speed and better network stability through SGD
optimization. Our contributions can be summarized as fol-
lows.

• A new filtering scheme that combines two counteractive
operators to adjust smoothing and sharpening in MLPs.
The filter helps neural fields remove noisy artifacts while
enhancing distinct details.

• Better performance over state-of-the-art methods on
multiple tasks, including image representation, 3D shape
reconstruction and novel view synthesis.

2 Related Work
Implicit Neural Representation. Deep neural networks
have been shown to be effective for learning implicit func-
tions representing images [4, 5, 11, 12], fonts [13] and 3D
humans, objects and scenes [14–20]. They use coordinate-
based MLPs that can be sampled at arbitrarily high spatial

resolution. Therefore, such a representation can be used di-
rectly for super-resolution tasks. Other applications include
view synthesis [11, 21–23], point-cloud-based 3D recon-
struction [17, 18, 24, 25], and 3D reconstruction from single
images [15, 26–28]. In addition to visual reconstruction and
generation, implicit representation is also widely used for
many other tasks, such as feature matching [29] and scene
understanding [30]. A comprehensive review of the use of
implicit representations has been provided by [1].
As evidenced by [2, 3], ReLU-MLPs have difficulty cap-

turing very detailed signals due to the spectral bias. FFN [4]
uses positional encoding to map input coordinates of signals
to Fourier features using sinusoidal functions. In SIREN [5],
on the other hand, the ReLU activations in the MLPs are
replaced by sine functions. They have a similar spirit that the
input or intermediate results are manipulated in the frequency
domain to capture high frequencies in the output. Moreover,
the sine functions in Fourier features or MLPs are designed
to be learned to better fit individual data [7, 8]. In contrast to
the use of sine functions, spline positional encoding (SPE)
[31] explores learnable spline functions for coordinate em-
bedding. With sufficient local support of splines, SPE can
also approximate the signal with high frequencies. However,
when using a small number of local supports, the boundaries
become noticeable, resulting in strip noise and significantly
reducing visual quality.

Reconstruction of high-frequency details is usually accom-
panied by the appearance of visual artifacts in the results.
Some recent developments have led to structured or hier-
archical designs that can further close the gap between the
generated results and the target function. They divide the
complex functions of 3D objects and scenes [32–34] or im-
ages [7] into regular sub-regions and fitting each sub-region
while maintaining global consistency.
Subdividing regions may have little effect if a subregion

is itself complex. Recently, spatial adaptation on frequencies
seems to be a better solution. SAPE [6] presents a progres-
sive optimization strategy to encode signals with increasing
frequencies at single spatial locations. The method reduces
noisy artifacts, but tends to produce oversmoothed regions.
Some existing methods such as MFN [8] and BACON [9], pi-
GAN [10], and ModSIREN [7] also modulate parameters of
sinusoidal functions for better reconstruction and conditional
generation. As discussed earlier, adjusting these parameters
can lead to global and potentially large changes in the results,
so they lack local controls for adjustment. Instead of modu-
lating these hyperparameters, we adopt the idea of CNN with
filters to provide MLPs with more local controllability.

4 Yixin Zhuang

(a) No Filtering (FFN) (b) With Smoothing (d) With Smoothing & Recovering (e) GT(c) With Recovering

Fig. 4 Illustration of the filtering effect on a 2D image. The target image (e) contains homogeneous regions everywhere and some
small-scale text. We show only a subset of (e) to illustrate the difference between the methods. (a) is generated by FFN without filters and
shows random noise (highlighted in gray box). Smoothing (b) provides smoother text by removing the noise in it, but this oversmooths some
small-scale structures (as shown in the orange box). Recovering (c) can restore finer details for small text, but is not able to smooth the noise.
The combination of two operators (d) allows smoothing noise and restoring small structures.

Deep Image Filters. Image filters usually compute the
weighted average of the neighboring pixels of the image
as output or sometimes use regularization constraints for
image optimization. Recently, a number of researchers have
introduced neural network filters that can be learned from
a large number of datasets for various applications [35–
40], such as image denoising and deblurring, etc. They are
mainly based on convolutional neural networks, from which
the local neighborhood of the query point is determined.
For continuous functions, it is difficult to determine the
neighborhood unless one discretizes the input domain with
predefined scales or resolutions. Therefore, we attempt to
develop a general filtering scheme for MLPs that can handle
image functions and more continuous signals.

3 Method
In this section, we introduce neural fields and our filter in
section 3.1 and section 3.2, respectively.

3.1 Neural Implicit Functions

An implicit function is a continuous function fθ : Ra → Rn

that takes as input a coordinate of any query point from the
Euclidean space x ∈ Ra and predicts a value in the target
space Rn. Learning fθ with a neural network requires a set
of coordinate samples as input and corresponding values as
output. Examples of fθ include mapping of pixels to RGB
values for image functions or the projection of 3D coordinates
to signed distance values for 3D shape functions.
The implicit function fθ is usually modeled with MLPs.

Due to the spectral bias, ReLU-based MLPs are difficult to
fit high-frequency signals, resulting in severe underfitting.
To shift the preference to the higher frequency spectrum,
FFN embeds the input in the frequency domain so that MLPs
can easily learn high frequencies. Specifically, the coordinate
x is represented by a d-dimensional Fourier feature vector,

γ(x) ∈ Rd, as follows:

γ(x) =
s√
d

[cos(2πxBT)‖sin(2πxBT)] (1)

where ‖ is the concatenation of two vectors and B is a d
2 × a

matrix drawn randomly from the Gaussian distribution with
standard deviation σ. σ is the key parameter controlling the
global frequency and complexity of the results. s is a constant
for global scaling.

Using Fourier features facilitates learning of complex sig-
nals, but runs the risk that the reconstructed function will
have unexpected, dramatic local variations that create ran-
dom noise. Noisy artifacts can be removed by reducing the
frequency parameter σ, but this results in oversmoothing of
the entire domain. In addition to tuning σ, we introduce a
filter that can remove noise while improving detail.

3.2 Filtering Functions

Let θi, i = 1, 2, ..., k denotes the layers of a k-layer MLP,
then the coordinate x passing through the MLPs produces a
sequence of outputs, denoted yi, i = 1, 2, ..., k. We apply a
filter to the intermediate outputs of the MLPs, i.e., yi, i =

1, 2, ..., k − 1, except for the final output yk. The network
function can be written in recursion as follows:

y1 = θ1(γ(x))

yi = o(θi(yi−1))� Fx, i = 2, ..., k − 1

fθ = θk(yk−1)

(2)

where o(·) is the spherical normalization function such that
o(v) = v

‖v‖ , and � is the Hadamard product multiplying
the normalized yi by a scaling vector Fx. o(·) and � denote
our smoothing and recovering operators, respectively, and
the scaling vector Fx is used to control the sharpness of the
recovering at each location x. We define Fx as

Fx = γs(x)MT (3)

A Simple And Effective Filtering Scheme For Improving Neural Fields 5

(b) Fx = xMT (c) Fx = γs(x)MT, σs = 1 (f) GT(d) Fx = γs(x)MT, σs = 10 (e) Fx = γs(x)MT, σs = 30(a) Fx = 1

Fig. 5 Illustration of the recovering strength. We show the recovering strength (bottom), i.e., the scaling vectors Fx, and the corresponding
reconstructed results (top). The reconstruction results show different levels of sharpness depending on Fx, which can be a constant (a), or
generated from the coordinates x (b), or derived from Fourier features γs(x) (c-e). (a)&(b) have a problem with oversmoothing, while (c-e)
can provide more detail. In (c-e), using a larger σs adds more variation to the scaling vectors, resulting in sharper reconstruction, but too
high σs produces more random noise. (d) has a balanced recovering strength that achieves the best PSNR.

where Fx is generated from another Fourier feature γs(x)

using a linear transformation M . We denote the control
parameter for γs(x) as σs. Note that γs(x) serves for Fx
and is different from γ(x) for MLPs, but usually they can be
identical. If they are different, i.e., γs(x) andγ(x) use different
frequency parameters, then MLPs are able to adjust local
variations over a larger range, between σs and σ. In practice,
we set γs(x) and γ(x) to identical for the representation of
image and shape functions, and to different for more complex
functions, such as the neural radiance field that mixes color
and density fields.
A 2D example in Figure 4 illustrates the effects of the

smoothing and recovering operators and their combination.
The baseline method (a) has no filter and produces random
noise and oversmoothed patches. Smoothing (b) removes
most of the noise, but loses some small-scale text. Recovering
(c) reveals many small structures, but cannot reduce noise.
Combining both operators (d) can restore fine-grained details
and remove noise at the same time.

Smoothing Constraint. There are several ways to smooth
the output of neural networks, by using a smoothing operator
that computes the weighted average of the neighboring sam-
ples as output, or by applying a smoothing regularization in
the loss function. The latter, the smoothing constraints, can
be defined for a single sample, e.g., by applying the Eikonal
equation to individual samples, normalizing the magnitude
of each sample’s gradient to 1. Similarly, our smoothing
operator can be understood as a smoothing constraint applied

to intermediate features of MLPs, forcing the magnitude
of the features to a constant such that the resulting feature
space is a hypersphere that is smooth everywhere. Once all
intermediate MLP features are smoothed, the final output
is also smoothed everywhere by a certain degree, resulting
in a global smoothing effect of the results. This operator is
therefore referred to as the smoothing operator in our method,
and serves as a smoothing constraint on the neural fields.

Recovering Strength. One can change the scaling vector
Fx to control the details brought by the recovering opera-
tor. For example, smoother reconstruction requires weaker
recovering in which Fx is generated from a flatter domain.
In Figure 5, several Fx are shown in the bottom row, includ-
ing Fx = 1, xMT and γs(x)MT (σs = 1, 10 and 30) with
increasing complexity, and the corresponding results reveal
different degrees of sharpness. Fx = 1 means that recovering
operator is not used, and a too strong recovering operator
(σs = 30) cancels the smoothing effect. The best results in
this example are obtained when γs(x) and γ(x) are identical,
i.e., σs = σ = 10. In most of our experiments we use the
default setting Fx = γs(x)MT , σs = σ.

4 Experiments

We develop networks (denoted as FINN) using our filter for
2D image representation, 3D shape reconstruction, and novel
view synthesis, and validate the benefits of the filter.

6 Yixin Zhuang

PSNR: 27.47dB

LIP: 0.141

PSNR: 26.72dB

LIP: 0.119

PSNR: 27.65dB

LIP: 0.104

PSNR: 28.26dB

LIP: 0.098

PSNR: 28.70dB

LIP: 0.095F F F F F

(a) FFN (b) SPE (c) SIREN (d) SAPE (e) FINN

PSNR: 28.33dB

LIP: 0.146

PSNR: 28.06dB

LIP: 0.083

PSNR: 28.61dB

LIP: 0.091

PSNR: 28.57dB

LIP: 0.093

PSNR: 29.81dB

LIP: 0.068F F F F F

(e) Reference

Fig. 6 Qualitative image generalization results. Random noise is evident in FFN, SPE, and SIREN in both “natural" (top) and “text"
(bottom) images. SAPE removes much of the noise, but oversmooths some areas (e.g., in the highlighted boxes). Using the error map, we
can also see a lot of weak noise in the background of the “text" image in FFN, SPE, SIREN, and SAPE.

4.1 Image Representation

Image functions map a 2D coordinate to an RGB color.
Our network has 512-dimensional Fourier features (with
σ = 10, s = 80 for γ(x) and γs(x) is identical to γ(x)),
MLPs with 3 hidden layers, 256 channels, ReLU activation,
and sigmoid at the output. In addition, our filter contains a
512×256 matrix to generate the scaling vector Fx. We use
MSE loss to train the network for 2000 epochs with a learning
rate of 1e-3.
We compare our method with FFN, SIREN, SPE, and

SAPE, on the datasets of “natural" and “text" images from
FFN. The training pixels are sampled on a regularly spaced
grid containing 25% of the pixels in the image, and all
pixels are used for testing. We use two metrics, PSNR and
FLIP [41], for comparisons. FLIP provides an error map

for visualisation and a global measure, i.e., the weighted
median of the errors of all pixels. As listed in Table 1, our
method outperforms all compared methods in all datasets and
metrics with significant gains. In particular, for “text” images

Model PSNR↑ FLIP ↓
Natural Text Natural Text

FFN 25.57 ± 4.19 30.47 ± 2.11 0.131±0.041 0.096±0.043
SIREN 27.03 ± 4.28 30.81 ± 1.72 0.114±0.040 0.070±0.020
SPE 26.49 ± 3.89 31.12 ± 2.18 0.130±0.038 0.065±0.022
SAPE 28.09 ± 4.04 31.84 ± 2.15 0.118±0.026 0.083±0.041
FINN 28.51 ± 4.35 33.09 ± 1.97 0.100±0.037 0.042±0.016
Table 1 Quantitative comparison results for image representation.

containing large homogenuous areas and small-sized text, the
PSNR of all compared methods ranges from 30.0 to 32.0,
while our method is larger than 33.0.
The visual results in Figure 6 show that all methods can

produce realistic images. However, when zoomed in closer, we
see that SAPE produces many smoothed patches, while FNN
and SIREN produce many random noisy artifacts and SPE
contains stripe noise. Our method reconstructs small-scale
structures well without producing much noise.

A Simple And Effective Filtering Scheme For Improving Neural Fields 7

FINNso FINNro FINNin FINNfxs

Natural 27.91 ± 4.21 28.09 ± 4.06 28.26 ± 4.35 28.59 ± 4.39
Text 31.19 ± 1.86 31.99 ± 1.73 32.22 ± 2.58 33.17 ± 2.01
Table 2 Quantitative comparison results for FINN variants.

Design Choices. We validate each component of our filter
and show the numerical results of the variants in Table 2.
Use only smoothing or recovering operator. FINNro and

FINNso are networks that integrate the recovering and smooth-
ing operators, respectively, into FFN. They perform worse
than FINN, but both outperform FFN. This suggests that
either noise reduction or detail enhancement contributes to
the improvement in reconstruction. However, each operator
has only a single effect, smoothing or sharpening the results,
so it is not comparable to apply both.
Filtering on inputs instead of features of MLPs. We

refer to the method that applies the filter to the input Fourier
feature γ(x) as FINNin. Although FINNin can adjust Fourier
features and performs better than FFN, its performance is not
comparable to FINN because the subsequent MLP layers are
unfiltered, making the filter less effective. However, FINNin

outperforms FINNro and FINNso, suggesting that our filter
is more effective than those that can only smooth or recover,
even when the filter is applied only to the inputs.
Use layer-wise scaling vectorsF ix instead of a globalFx.

FINNfxs means that Fx passed to the different MLP layers are
generated independently, i.e., denoted as F ix for layer i. This
adds many more network parameters, but the performance
gain over using a global Fx is negligible. The main reason is
that Fx and all F ix are derived directly from the same Fourier
features, which limits their ability to generate diverse scaling
vectors. While it is possible to generate more complex F ix by
customising γs(x) andM , this is not recommended because
a stronger recovering operator reduces the smoothing effects.
It is also shown that simply increasing the network capacity
does not improve the performance.

Network Convergence and Stability. Figure 7 shows the
PSNR curves of 32 images from the “natural" and “text"
datasets. Both FFN (left) and FINN (right) are trained for
2000 iterations. FINN converges after 300 iterations and
maintains stable PSNR values for most images since then. In
contrast, FFN converges more slowly and less stably during
optimization, resulting in slightly curved and non-monotonic
PSNR curves. This suggests that the filter prevents overfitting,
leading to better generalization.

0 100 300 1000 2000
epoch (s)

5

10

15

20

25

30

35

40

PS
NR

FFN

0 100 300 1000 2000
epoch (s)

FINN

Fig. 7 Convergence and stability comparison with the networks
with and without filters. With filter, FINN (right) converges faster,
is more stable, and has higher PSNR values than FFN (left).

4.2 3D Shape Reconstruction

For 3D surface reconstruction, we consider the 3D surface
as a zero level-set of the signed distance field (SDF), where
each 3D query point has a corresponding value indicating
its distance and whether it is inside or outside the surface.
We train the network to compute the SDF from the input
point clouds and their normals. In addition, we apply a
regularization term to constrain the gradient of the SDF at
all spatial positions to a unit vector, as suggested by [17, 18].
The loss function is defined as
Lsdf =

∑
x∈Ω

|‖∇fθ(x)‖ − 1|+
∑

x∈Ω\Ω0

exp(−|fθ(x)|)

+
∑
x∈Ω0

(|fθ(x)|+ ‖∇fθ(x)− n(x)‖)
(4)

where Ω is the set of points and Ω0 contains only points on the
surface. fθ(x) and∇f(x) are the fitted SDFs and gradients,
and n(x) is the ground truth normal of the points. Each loss
term is weighted by a constant.
The network for this task is similar to that for image

representation, except that the output layer has no activation
and the number of hidden layers is increased from 3 to 4.
We use a low frequency, σ = 1 and γs(x) = γ(x), because
SDFs are scalar fields, usually much less complex than the
RGB color field. We also reduce the dimension of the Fourier
features from 512 to 256. To train the network, in addition to
points on the surface, points outside the surface are needed,
which are randomly sampled from a bounding cube. The
network is trained for 10k iterations using the Adam optimizer
with a learning rate of 5×10−4. After training, a set of regular
grid points is sampled to obtain the SDFs, and the marching
cubes algorithm [42] is used to extract the triangular mesh.
We compare our method with FFN and SIREN on large

scenes with several million triangles. Figure 8 shows two
examples, “statue” and “interior room”, both of which have
very complex geometric features and large smooth surface
patches. All methods can produce plausible results with fine-

8 Yixin Zhuang

FFN

SIREN

Input

FINN

Fig. 8 Qualitative results of large-scale 3D shape reconstruction. For the “statue" (left) and “interior room" (right) scenes, FFN and SIREN
contain both random high frequencies and excessively smoothed regions in the reconstructed shapes. For example, SIREN has many small
bumps in the floor and wall regions of “interior room", and FFN also contains noisy artifacts in there. Similar problems exist in “statue",
where SIREN and FFN exhibit unexpected noise and lose some sharp geometric features, such as the carved details on the feet that are
highlighted. In both scenes, FINN keeps the flat regions flat and restores more sharp features.

grained geometric detail. However, when zoomed in closer,
we see that FNN and SIREN produce random bumps and
noisy artifacts along the surface and miss some important
features. FINN performs better on both flat and sharp surface
regions.
In addition, we show results on a large scale 3D shape

dataset. The ABC dataset [43] contains a subset with ground
truth surface normals. From this subset, 100 shapes were
randomly selected for evaluation. Each shape contains 2048
vertices and was trained and tested using the default setting
of our 3D reconstruction neural network. Figure 10 shows
the results of FFN and Ours, with Ours significantly outper-
forming FFN. Our method can recover both sharp edges (high
frequencies) and flat regions (low frequencies) with high fi-
delity. This proves that our filter can reduce unexpected noise
while improving details. Numerical results are presented in
Table 3, which show that our method outperforms the FFN
method by a large margin.

FFN 5.69
Ours 4.81

Table 3 Numerical results of 3D reconstruction on ABC-Dataset.
Values are chamfer distances multiplied by 105.

4.3 Novel View Synthesis via 3D Inverse Rendering

The novel view synthesis task obtains a set of 2D images
with known camera poses (i.e., position and view direction)
and generates images from new poses. Following Neural
Radiance Fields (NeRF) [11], we construct a vector field in
3D space with MLPs that map 3D coordinates to RGB colors
and volume densities. Using this field, images with specific
poses can be rendered using volume rendering techniques.
To train NeRF, we compute the MSE loss between the input
images and the re-rendered images from the fitted field.
Following FFN, we use the “simplified NeRF" for evaluation,
where hierarchical sampling and view dependence have been

A Simple And Effective Filtering Scheme For Improving Neural Fields 9

GT

FFN

FINN

Fig. 9 Qualitative results of novel view synthesis using a “simplified NeRF”. In the “Lego” (left) and “Fern” (right) scenes, FINN
contributes to a higher level of detail in the results compared to FFN.

removed from the original NeRF.
Our network for this task has 512-dimensional Fourier

features, MLP with 4 layers, 256 channels, ReLU activation,
sigmoid on RGB output, and a scaling vector generator with
512×256 parameters. Unlike images and 3D shapes, NeRF
mixes appearance and geometry information and is therefore
more complex. Following images and shapes, which use
σ = σs = 10 for color fields and σ = σs = 1 for signed
distance fields, we set σ ≈ 10, σs ≈ 1 to optimize neural
fields in a wide range, between σ and σs. A better learning
scheme would be to decouple appearance and geometry and
learn each field in its own frequency spectrum bandwidth.
However, this requires a redesign of the framework and we
leave this to future research.
We validate our filter on two datasets, including a synthe-

sized scene “Lego” and a real scene “Fern”. The number of
images for training and testing are 100, 25 for Lego and 17, 3
for Fern respectively. FFN sets σ by grid search to 6.05 for
Lego and 5.0 for Fern. And we set σ, σs to 12, 1. Note that
we use a 6-layer MLP for FFN, so it has the same network
size as FINN. The two networks are trained for 50k iterations
using the Adam optimizer with a learning rate of 5×10−4.
The results in Table 4 show that FINN performs better

than FFN for both training and testing for the two datasets,
especially for the real scene Fern, with a significant perfor-
mance advantage. The visual results are shown in Figure 9,

Model Lego Fern
Train PSNR Test PSNR Train PSNR Test PSNR

FFN 26.25 ± 1.00 25.74 ± 1.06 25.06 ± 0.44 24.30 ± 0.67
FINN 26.70 ± 1.00 26.02 ± 1.10 25.99 ± 0.53 25.28 ± 0.63

Table 4 Numerical results of novel view synthesis.

with FINN providing more detail than FFN. Noise is usually
a minor issue in NeRF because each pixel is integrated over
a series of samples using volume rendering, averaging local
random high frequencies if present. In practice, using a fre-
quency parameter σ that is too high does not lead to random
noisy artifacts, but may cause the networks not to converge.

5 Conclusion
We present a novel filter for neural fields. Our filter gives
MLPs better control for smoothing and sharpening neural
fields. The filter has two counteractive operators: a smoothing
operator that smooths the entire region, and a recovering
operator that restores fine details in the oversmoothed regions.
Either operator on its ownwould result in oversmoothing or an
increase in noise, while their interaction results in removing
much noise while enhancing detail, leading to better fitting
and generalization. We demonstrate the effectiveness of our
filter on several tasks and show significant improvement over
state-of-the-art methods.

10 Yixin Zhuang

FFN

Ours

GT

Fig. 10 Qualitative results from FFN and Ours on the ABC-Dataset. The models contain large flat regions and sharp edges. Ours is better
at preserving both flatness and sharpness than FFN in most examples.

A Experimental Details
A.1 Network Details

Our networks for 2D image representation, 3D shape recon-
struction, and novel view synthesis via 3D inverse rendering
are detailed in Figure 11.

Impact of Network Size. For most tasks, FFN uses a fixed
Fourier feature embedder and 3-layer ReLU MLPs, while
SIREN uses 5-layer MLPs with sinusodial activation. The
hidden feature size is fixed at 256. FINN has one more
adaptive filter than FFN. Therefore, more network parameters
are usually required, with a number of 512×256 and 256×256

for image representation and 3D reconstruction, respectively.
For the “simplified NeRF” that uses 4 MLP layers, we add
two additional MLP layers to FFN so that FINN and FFN
have the same network size.

FFN FINN1 FINN2 FINN3 FINN4

Natural 25.57 28.07 28.43 28.51 28.47
Text 30.47 32.17 32.91 33.09 33.08

Table 5 Impact of network size.

More network parameters can improve performance, but
above a certain network size, performance converges. Table 5
shows the results of FFN and variants of FINNwith increasing
hidden layers, from 1 to 4. Note that FFN has 3 hidden layers,
the same size as FINN1, which has only one hidden layer. It

is clear that FINN1 performs much better than FFN. If the
number of hidden layers in FINN is increased from 2 to 4,
the results change only slightly.
Our method may require more network parameters, but

allows for better generalization that cannot be achieved by
simply increasing the size of the network. The methods such
as FFN, SIREN, MFN and BACON can already handle data
with very small errors or even with errors close to zero.
The problem lies in the transformation of the whole space
from linear/smooth to strongly nonlinear using too high
frequencies. This leads to high generalization error as noisy
artifacts increase in the unseen space. Simply increasing the
size of the network is not able to improve the generalization.
Smoothing regularization is required to reduce noise, but
this usually compromises data fitting. Our filter improves
generalization without compromising fitting.

A.2 Additional Training Details

3D Shape Reconstruction. The batch size when fitting
large-scale point clouds is 200k, of which 100k points on the
surface are from the input and 100k points off the surface
are randomly generated within the unit bounding box. For
medium sized shapes, the number of points for training in
a batch is set to 323. We generate the signed distance fields
with a resolution of 2563 and then extract meshes from them.
To calculate the chamfer distance, we uniformly extract 643

points from the mesh. The weighting parameters in the loss

A Simple And Effective Filtering Scheme For Improving Neural Fields 11

⨀ ⨀ ⨀

𝑭𝒙

512

𝒙

RGB

𝐏𝐄

256

256 256 256 256 256 256 3

FC
+R
eLU

FC
+R
eLU

FC
+R
eLU

FC+SigM
oid

FC

Spherical
N
orm

alization

Spherical
N
orm

alization

Spherical
N
orm

alization

⨀ ⨀ ⨀

𝑭𝒙

256

𝒙

SDF

𝐏𝐄

256

256 256 256 256 256 256 1

FC
+R
eLU

FC
+R
eLU

FC
+R
eLU

FC

FC

Spherical
N
orm

alization

Spherical
N
orm

alization

Spherical
N
orm

alization

2D Pixel

3D Point

⨀

256 256

FC
+R
eLU

Spherical
N
orm

alization

(A) Image Regression

(B) Implicit Surface Reconstruction

𝜎
=
10

𝜎
=
1

𝜎
=
1

𝜎
=
10

⨀ ⨀

𝑭𝒙

512

𝒙 𝐏𝐄

256

256 256 256 256

FC
+R
eLU

FC
+R
eLU

FC

Spherical
N
orm

alization

Spherical
N
orm

alization

3D Point

⨀

256 256

FC
+R
eLU

Spherical
N
orm

alization

(C) Simplified Neural Radiance Field

𝜎
=
1

𝜎
=
10

Density

4

FC

SigM
oid RGBRGB

Fig. 11 Our networks for 2D image representation, 3D shape reconstruction, and novel view synthesis via 3D inverse rendering.

function are set as follows,
Lsdf =

∑
x∈Ω

a1|‖∇fθ(x)‖ − 1|

+
∑

x∈Ω\Ω0

a2 · exp(−50|fθ(x)|)

+
∑
x∈Ω0

(a3|fθ(x)|+ a4‖∇fθ(x)− n(x)‖)

where a1, a2, a3 and a4 are set to 0.1, 0.1, 10 and 2.0 respec-
tively. σ is set to 1 for all examples.

NeRF. The “Lego” scene datasets contain 100 training
images rendered froma synthesis scenewith black background
colors. “Fern” contains 17 training images taken in the real
world. The ground truth of the camera poses is computed using
Structure from Motion (SfM), which provides the extrinsic
parameters of the input images and the 3D positions of the
feature points. It is common to use COLMAP [44] as an open
source tool for SfM. We take 1024 rays with 128 points along
each ray in a batch for training. Training takes about an hour
for FFN and FINN for 50k epochs.

B More Results
3D Shape Reconstruction. Additional results on sparse
point clouds are shown in Table 6. Each input point cloud
contains tens of thousands of points and has some empty
holes. FINN generally outperforms FFN for all shapes except
“Bimba”, whose bottom is empty and therefore the recon-
struction has large uncertainty. Qualitative results show that
both FINN and FFN can fit points and interpolate holes well,
but FINN provides more small-scale detail.

Robustness to Noisy Data. Random noisy artifacts arise
from the use of high-frequency Fourier features in neural
fields and are also found in input data; in both cases, our filter
can reduce them. To validate our filter in removing noise in
input data, we create noisy point clouds by randomly adding
to each point a Gaussian noise of N (0, σ2), σ = 0.02. Then
we take noisy points and orignal points as input and train
FFN and FINN with the above experimental settings. As can
be seen in Figure 12, FINN reconstructs smooth and clean
shapes, while FFN overfits noisy points, resulting in noisy

12 Yixin Zhuang

FFN

FINN

Training
Samples

Fig. 12 3D shape reconstruction on noisy point clouds. FFN creates random patches that stick to underlying surfaces while FINN avoids
overfitting to the noisy points and create clean shapes.

Armadillo Bunny Bimba Dragon Gargoyle Fandisk

Input

FFN

2.92 2.04 138.11 1.97 4.58 1.77

FINN

2.84 1.90 139.06 1.92 4.24 1.69
Table 6 Results of 3D shape reconstruction of medium sized point
clouds. Values are chamfer distances multiplied by 105.

patches that adhere to underlying surfaces. The results show
that FINN can handle noisy point sets without the need for
explicit regularization constraints.

C More Analysis
Variants of Smoothing Operators. In addition to the
spherical normalization, we add the batch norm for fur-
ther study. The spherical norm performs better than the batch
norm, as shown in Table 7. This is because the batch norm
has fewer smoothing effects, since it transforms features lin-
early and is therefore unable to reduce the noise normally
caused by dramatic local variations. In contrast, the spherical
norm forces features into a hypersphere, which has a strong

Batch Norm Spherical Norm
Natural / Text 27.87 / 31.78 28.51 / 33.09
Table 7 Batch Norm VS Spherical Norm.

Gaussian RFF Gaussian RFF+Filter PosEnc PosEnc+Filter
Natural 25.57 28.51 26.79 27.87
Text 30.47 33.09 30.53 32.57

Table 8 Results using different coordinate embedding.

smoothing effect.

Variants of Coordinate Embeddings. We compare two
coordinate embeddings, Gaussian Random Fourier Feature
(RFF) and Positional Encoding (PosEnc)[4]. We set σp to
8 and the feature dimension to 512 for PosEnc. Gaussian
RFF is actually FFN in this work. Table 8 shows the results
of Gaussian RFF and PosEnc, with and without filters. For
both embeddings, the results are significantly improved by
applying the filter.

Use layer-wise scaling vectors F ix instead of a global Fx
on 3D reconstruction and novel view synthesis tasks. In
addition the image representation, the numerical compari-
son of using layer-wise recovering operators and a global
recovering operator for 3D reconstruction and novel view
synthesis is shown in Table 9 and 10. This shows that adding

A Simple And Effective Filtering Scheme For Improving Neural Fields 13

Armadillo Bunny Bimba Dragon Gargoyle Fandisk
Global Fx 2.84 1.90 139.06 1.92 4.24 1.69

Layer-wise F i
x 2.90 1.99 140.07 2.03 4.18 1.69

Table 9 Numerical results of 3D reconstruction by using layer-wise
recovering operators F i

x and a global recovering operator Fx.

Model Lego Fern
Train PSNR Test PSNR Train PSNR Test PSNR

Global Fx 26.70 ± 1.00 26.02 ± 1.10 25.99 ± 0.53 25.28 ± 0.63
Layer-wise F i

x 26.77 ± 1.03 25.94 ± 1.32 26.00 ± 0.54 25.34 ± 0.65

Table 10 Numerical results of novel view synthesis by using
layer-wise recovering operators F i

x and a global operator Fx.

Fandisk Gargoyle

Dragon BimbaArmadillo

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Bunny

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

layerwise global FxFi
x

Fig. 13 Training dynamics with layer-wise F i
x and global Fx

in the 3D reconstruction network. The two variants have similar
convergence speed and converge to similar optima.

more scaling parameters does not consistently improve the
performance of the different examples. With similar network
structure, performance saturates as we increase the number
of parameters.

We also show the training dynamics of the 3D reconstruc-
tion network. The figure 13 shows that the layer-wise operator
and the global operator have quite similar training dynamics
and converge to similar optima for six examples.

Filter Effects of Image Interpolation. We fitted an image
with a resolution of 128×128 pixels using FINN and FFN.
The results in Figure 14 (c) show that both FFN and FINN
can accurately fit the training pixels. We then extrapolate
the fit images by a factor of 4 in the vertical and horizontal
directions to a resolution of 512×512 pixels. We first use
bilinear interpolation, whose results are very similar for the
two fitted images, as shown in (d). Compared to the bilinear
interpolation, the interpolations with learned interpolants
show more local details, as shown in (e). For better illus-
tration of the interpolation, the training pixels are drawn in
black. From (e), it can be seen that FFN adds many noisy
artifacts by randomly deepening and flattening the colors.
This indicates that while FFN allows ReLU-MLP to fit high-
frequency training samples, it also introduces high-frequency
noise between them. With the filter, FINN reduces variations

between nearby training pixels and creates smooth patches
within texts, making it more generalizable to unseen pixels.

References
[1] Xie Y, Takikawa T, Saito S, Litany O, Yan S, Khan N, Tombari

F, Tompkin J, Sitzmann V, Sridhar S. Neural fields in vi-
sual computing and beyond. In Computer Graphics Forum,
volume 41, Wiley Online Library2022, 641–676.

[2] Basri R, Galun M, Geifman A, Jacobs D, Kasten Y, Kritchman
S. Frequency Bias in Neural Networks for Input of Non-
Uniform Density. In HD III, A Singh, editors, Proceedings
of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research,
PMLR2020, 685–694.

[3] Rahaman N, Baratin A, Arpit D, Draxler F, Lin M, Hamprecht
F, Bengio Y, Courville A. On the Spectral Bias of Neural Net-
works. In K Chaudhuri, R Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
PMLR2019, 5301–5310.

[4] TancikM, Srinivasan P,Mildenhall B, Fridovich-Keil S, Ragha-
van N, Singhal U, Ramamoorthi R, Barron J, Ng R. Fourier
features let networks learn high frequency functions in low
dimensional domains. Advances in Neural Information Pro-
cessing Systems, 2020, 33: 7537–7547.

[5] Sitzmann V, Martel J, Bergman A, Lindell D, Wetzstein G. Im-
plicit neural representations with periodic activation functions.
Advances in neural information processing systems, 2020, 33:
7462–7473.

[6] Hertz A, Perel O, Giryes R, Sorkine-Hornung O, Cohen-Or
D. Sape: Spatially-adaptive progressive encoding for neural
optimization. Advances in Neural Information Processing
Systems, 2021, 34: 8820–8832.

[7] Mehta I, Gharbi M, Barnes C, Shechtman E, Ramamoorthi
R, Chandraker M. Modulated periodic activations for gener-
alizable local functional representations. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
2021, 14214–14223.

[8] Fathony R, Sahu AK, Willmott D, Kolter JZ. Multiplica-
tive filter networks. In International Conference on Learning
Representations, 2020.

[9] Lindell DB, Van Veen D, Park JJ, Wetzstein G. Bacon: Band-
limited coordinate networks for multiscale scene representa-
tion. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2022, 16252–16262.

[10] Chan ER, Monteiro M, Kellnhofer P, Wu J, Wetzstein G.
pi-gan: Periodic implicit generative adversarial networks for
3d-aware image synthesis. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021,
5799–5809.

[11] Mildenhall B, Srinivasan PP, TancikM, Barron JT, Ramamoor-
thi R, Ng R. Nerf: Representing scenes as neural radiance fields

14 Yixin Zhuang

(a) Reference (b) Training pixels

W
ith

ou
t F

ilt
er

in
g

W
ith

 F
ilt

er
in

g

(c) Fitted pixels (d) Bilinear Interpolation (e) Network Interpolation

1/16

Fig. 14 Illustration of the filter effect. Starting from training pixels in (b) sampled from a reference image (a), we fit (b) with FFN and
FINN. We show the results with a subregion of (b) highlighting some texts. The fitted images are shown in (c), which is then extrapolated
using bilinear interpolation (see (d)). The results for FFN and FINN in (c)&(d) are very similar. In contrast, the network interpolants in (e)
show very different results. For example, in the highlighted text “H", FFN randomly deepens or flattens the purple color, while our filter can
smooth those noises and produce a clean text. To better see the interpolation, the training pixels in (e) are colored black.

for view synthesis. Communications of the ACM, 2021, 65(1):
99–106.

[12] Chen Y, Liu S, Wang X. Learning continuous image represen-
tation with local implicit image function. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, 8628–8638.

[13] Reddy P, Zhang Z, Wang Z, Fisher M, Jin H, Mitra N. A multi-
implicit neural representation for fonts. Advances in Neural
Information Processing Systems, 2021, 34: 12637–12647.

[14] Park JJ, Florence P, Straub J, Newcombe R, Lovegrove S.
Deepsdf: Learning continuous signed distance functions for
shape representation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 2019,
165–174.

[15] Mescheder L, Oechsle M, Niemeyer M, Nowozin S, Geiger
A. Occupancy networks: Learning 3d reconstruction in func-
tion space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, 4460–4470.

[16] Chen Z, Zhang H. Learning implicit fields for generative shape
modeling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, 5939–5948.

[17] AtzmonM, Lipman Y. SAL: Sign Agnostic Learning of Shapes

From Raw Data. In CVPR, Computer Vision Foundation /
IEEE2020, 2562–2571.

[18] Gropp A, Yariv L, Haim N, Atzmon M, Lipman Y. Implicit
Geometric Regularization for Learning Shapes. In ICML,
volume 119 of Proceedings of Machine Learning Research,
PMLR2020, 3789–3799.

[19] Sitzmann V, Zollhöfer M, Wetzstein G. Scene Representa-
tion Networks: Continuous 3D-Structure-Aware Neural Scene
Representations. In NeurIPS, 2019, 1119–1130.

[20] Peng S, Zhang Y, Xu Y, Wang Q, Shuai Q, Bao H, Zhou X.
Neural body: Implicit neural representations with structured
latent codes for novel view synthesis of dynamic humans. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, 9054–9063.

[21] Martin-Brualla R, Radwan N, Sajjadi MSM, Barron JT, Doso-
vitskiy A, Duckworth D. NeRF in the Wild: Neural Radiance
Fields for Unconstrained Photo Collections. In CVPR, Com-
puter Vision Foundation / IEEE2021, 7210–7219.

[22] Yu A, Ye V, TancikM, Kanazawa A. pixelnerf: Neural radiance
fields from one or few images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021,
4578–4587.

A Simple And Effective Filtering Scheme For Improving Neural Fields 15

[23] Bemana M, Myszkowski K, Seidel HP, Ritschel T. X-fields:
Implicit neural view-, light-and time-image interpolation. ACM
Transactions on Graphics (TOG), 2020, 39(6): 1–15.

[24] Williams F, TragerM, Bruna J, Zorin D. Neural Splines: Fitting
3D Surfaces With Infinitely-Wide Neural Networks. In CVPR,
Computer Vision Foundation / IEEE2021, 9949–9958.

[25] Williams F, Schneider T, Silva CT, Zorin D, Bruna J, Panozzo
D. Deep Geometric Prior for Surface Reconstruction. InCVPR,
Computer Vision Foundation / IEEE2019, 10130–10139.

[26] Xu Q, Wang W, Ceylan D, Mech R, Neumann U. DISN: Deep
Implicit Surface Network for High-quality Single-view 3D
Reconstruction. In NeurIPS, 2019, 490–500.

[27] Xu Y, Fan T, Yuan Y, Singh G. Ladybird: Quasi-Monte Carlo
Sampling for Deep Implicit Field Based 3D Reconstruction
with Symmetry. In ECCV (1), volume 12346 of Lecture Notes
in Computer Science, Springer2020, 248–263.

[28] Saito S, Huang Z, Natsume R, Morishima S, Kanazawa A,
Li H. Pifu: Pixel-aligned implicit function for high-resolution
clothed human digitization. In International Conference on
Computer Vision, 2019, 2304–2314.

[29] Chen Y, Fernando B, Bilen H, Mensink T, Gavves E. Neural
Feature Matching in Implicit 3D Representations. In ICML,
volume 139 of Proceedings of Machine Learning Research,
PMLR2021, 1582–1593.

[30] Zhi S, Laidlow T, Leutenegger S, Davison AJ. In-place scene
labelling and understanding with implicit scene representation.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, 15838–15847.

[31] Wang P, Liu Y, Yang Y, Tong X. Spline Positional Encoding
for Learning 3D Implicit Signed Distance Fields. In IJCAI,
ijcai.org2021, 1091–1097.

[32] Chabra R, Lenssen JE, Ilg E, Schmidt T, Straub J, Lovegrove
S, Newcombe RA. Deep Local Shapes: Learning Local SDF
Priors for Detailed 3D Reconstruction. In ECCV (29), volume
12374 of Lecture Notes in Computer Science, Springer2020,
608–625.

[33] Genova K, Cole F, Sud A, Sarna A, Funkhouser TA. Local
Deep Implicit Functions for 3D Shape. In CVPR, Computer
Vision Foundation / IEEE2020, 4856–4865.

[34] JiangCM, SudA,MakadiaA,Huang J, NießnerM, Funkhouser
TA. Local Implicit Grid Representations for 3D Scenes. In
CVPR, Computer Vision Foundation / IEEE2020, 6000–6009.

[35] Jampani V, Kiefel M, Gehler PV. Learning Sparse High Di-
mensional Filters: Image Filtering, Dense CRFs and Bilateral
Neural Networks. In CVPR, IEEE Computer Society2016,
4452–4461.

[36] Zhang J, Pan J, Lai W, Lau RWH, Yang M. Learning Fully
ConvolutionalNetworks for IterativeNon-blindDeconvolution.
In CVPR, IEEE Computer Society2017, 6969–6977.

[37] YoonY, JeonH,YooD, Lee J, Kweon IS. Learning aDeepCon-
volutional Network for Light-Field Image Super-Resolution.
In ICCV Workshops, IEEE Computer Society2015, 57–65.

[38] Gharbi M, Chen J, Barron JT, Hasinoff SW, Durand F. Deep

bilateral learning for real-time image enhancement.ACM Trans.
Graph., 2017, 36(4): 118:1–118:12.

[39] Chen Q, Xu J, Koltun V. Fast Image Processing with Fully-
Convolutional Networks. In ICCV, IEEE Computer Soci-
ety2017, 2516–2525.

[40] Li Y, Huang J, Ahuja N, Yang M. Joint Image Filtering with
Deep Convolutional Networks. IEEE Trans. Pattern Anal.
Mach. Intell., 2019, 41(8): 1909–1923.

[41] Andersson P, Nilsson J, Akenine-Möller T, Oskarsson M,
Åström K, Fairchild MD. FLIP: A Difference Evaluator for
Alternating Images. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 2020, 3(2): 15:1–15:23.

[42] Lorensen WE, Cline HE. Marching cubes: A high resolution
3D surface construction algorithm. ACM siggraph computer
graphics, 1987, 21(4): 163–169.

[43] Koch S, Matveev A, Jiang Z, Williams F, Artemov A, Burnaev
E, AlexaM, Zorin D, Panozzo D. Abc: A big cad model dataset
for geometric deep learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019,
9601–9611.

[44] Schonberger JL, Frahm JM. Structure-from-motion revisited.
In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, 4104–4113.

	1 Introduction
	2 Related Work
	3 Method
	3.1 Neural Implicit Functions
	3.2 Filtering Functions

	4 Experiments
	4.1 Image Representation
	4.2 3D Shape Reconstruction
	4.3 Novel View Synthesis via 3D Inverse Rendering

	5 Conclusion
	A Experimental Details
	A.1 Network Details
	A.2 Additional Training Details

	B More Results
	C More Analysis

