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Abstract. Neural implicit representations are highly effective for single-
view 3D reconstruction (SVR). It represents 3D shapes as neural fields
and conditions shape prediction on input image features. Image features
can be less effective when significant variations of occlusions, views, and
appearances exist from the image. To learn more robust features, we de-
sign a new feature encoding scheme that works in both image and shape
space. Specifically, we present a geometry-aware 2D convolutional kernel
to learn image appearance and view information along with geometric
relations. The convolutional kernel operates at the 2D projections of a
point-based 3D geometric structure, called spatial pattern. Furthermore,
to enable the network to discover adaptive spatial patterns that capture
non-local contexts, the kernel is devised to be deformable and exploited
by a spatial pattern generator. Experimental results on both synthetic
and real datasets demonstrate the superiority of the proposed method.

Keywords: Single Image 3D Reconstruction · Deformable Convolution
· Implicit Neural Representation

1 Introduction

3D shape reconstruction from a single image has been one of the central problems
in computer vision. Empowering the machines with the ability to perceive the
imagery and infer the underlying 3D shapes can benefit various downstream
tasks, such as augmented reality, robot navigation, etc. However, the problem
is overly ambiguous and ill-posed and thus remains highly challenging due to
information loss and occlusion.

In recent years, many deep learning methods have been proposed to infer
3D shapes from single images. These methods rely on learning shape priors from
many shape collections and can reason the underlying shape of unseen images. To
this end, various learning frameworks have been proposed that exploit different
3D shape representations, including point sets [7, 1], voxels [36, 37], polygonal
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meshes [10, 33], and implicit fields [4, 21, 24]. In particular, implicit field-based
models have shown impressive performance compared to the others.

Implicit field-based networks take a set of 3D samplings as input and pre-
dict corresponding values under varying representations (e.g., occupancy, signed
distance, etc.). Once fitted, 3D shapes are identified as the zero level of the
predicted scalar fields using meshing methods such as Marching Cubes [19]. By
conditioning the 3D shape generation on the extracted global feature of input
image [21, 4], the implicit networks are well-suited to reconstruct 3D shapes from
single images. However, this trivial combination often fails to reconstruct fine
geometric details and produces overly smoothed surfaces.

Fig. 1. Illustration of the pipeline of spatial pattern guided kernel. (a) shows that each
3D point sampling (colored differently) of the depicted shape is aligned to a 2D pixel by
the given camera pose. Compared with a 2D convolution kernel (b) that only considers
neighbors located within a 2D regular local patch, the kernels in (d) derived from the
proposed spatial patterns (c) explicitly exploit the underlying geometric relations for
each pixel. As a result, the kernels in (d) encode the local image features that capture
both image appearance and point relations.

Toward pixel-level accurate reconstruction, DISN [40] proposes a pixel-aligned
implicit surface network where individual point sampling is conditioned on a
learned local image feature obtained by projecting the point to the image plane
according to the camera pose. With local image features, the network predicts
a residual field for refinement. Compared to those only acquiring global image
features, local features enable the restoration of much finer-level geometry de-
tails. However, the strategy of associating 3D samplings with learned local image
features would not have intuitive meaning when samples are occluded from the
observation view. Hence, to improve the local image feature, Ladybird [41] uti-
lizes the feature extracted from the 2D projection of its symmetric point obtained
from the self-reflective symmetry position of the object. The reconstruction is
significantly improved upon DISN. Nevertheless, the strategy used in Ladybird
is not sufficiently generic as the feature probably would have no intuitive mean-
ing in the situation where the symmetric points are non-visible or the symmetry
assumption does not hold. Meanwhile, D2IM-Net [14] samples training points
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based on the scale of geometry feature and includes image laplacian for loss
computation, both targets at sharp surface regions. D2IM-Net significantly im-
proves the visual quality but can still fail when the quality of image laplacian
is low or dramatic self-occlusion happens. Therefore further exploration of local
image features is needed in tackling those challenges.

In this paper, we introduce a new image feature encoding scheme, supported
by spatial pattern, to achieve further exploitation of local image features. The
spatial pattern may include geometric relationships, e.g., symmetric, co-planar,
or other structures that are less intuitive. With the spatial pattern, a 2D kernel
operating in image space is derived to encode local image features of 3D point
samplings. Specifically, the pattern is formed by a fixed number of affinities
around a 3D sampling, for which the corresponding 2D projections are utilized
as the operation positions of the kernel. Although a traditional 2D convolution
is possible to encode contextual information for the central point, it ignores
the underlying geometric relations in the original 3D space between pixels and
encounters the limitations brought by the regular local area. A 2D deformable
kernel [6] is able to operate in irregular neighborhoods, but it is still not able to
explicitly consider the underlying 3D geometric relations, which are important
in 3D reconstruction tasks.

Figure 1 shows the pipeline of the 3D spatial pattern guided 2D kernel. As
shown in Figure 1 (c-d), the kernels operate on points determined by spatial pat-
terns for different point samplings. Specifically, the proposed kernel finds kernel
points adaptively for each pixel, which considers its geometric-related positions
(e.g., symmetry locations) in the underlying 3D space, rather than only relying
upon the appearance information. Furthermore, the spatial pattern is devised to
be deformable to enable the network to discover more adaptive geometric rela-
tions for point samplings. In the experiments section, we will explore the learned
3D spatial pattern with visualization and statistics.

To demonstrate the effectiveness of spatial pattern guided kernel, we integrate
it into a network based on a deep implicit network [40], and extensively evaluate
our model on the large collection of 3D shapes – the ShapeNet Core dataset [3]
and Pix3D dataset [28]. The experiments show that our method can produce
state-of-the-art 3D shape reconstruction results from single images compared to
previous works. Ablation experiments and analyses are conducted to show the
performance of different spatial pattern variants and the importance of individual
points within the spatial pattern.

In this work, we make the following contributions.

– We present spatial patterns to provide the network with more flexibility to
discover meaningful image features that explicitly consider the geometric
relationships.

– We extend 2D deformable convolutional kernels with a 3D spatial pattern
generator to learn meaningful geometric structures that are crucial for 3D
shape reasoning.

– We perform extensive experiments on a real and a synthetic dataset to val-
idate the effectiveness of learned spatial patterns. Our method consistently
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outperforms STOA methods on several metrics and shows better visual qual-
ities.

2 Related Work

2.1 Deep Neural Networks for SVR.

There has been a lot of research on single image reconstruction tasks. Recent
works involve 3D representation learning, including points [7, 15, 20], voxels [5,
37, 39], meshes [10, 33, 34, 8] and primitives [23, 30, 38]. Those representation can
also be learned with differentiable rendering that do not require the ground truth
3D shapes [13, 18, 16, 42, 11, 15].

In this line of research, AtlasNet [10] represents 3D shapes as the union of
several surface elements that are generated from the learned multilayer percep-
trons (MLPs). Pixel2Mesh [33] generates genus-zero shapes as the deformations
of ellipsoid template meshes. The mesh is progressively refined with higher reso-
lutions using a graph convolutional neural network conditioned on the multi-scale
image features. 3DN [34] also deforms a template mesh to the target, trained
with a differentiable mesh sampling operator pushing sampled points to the tar-
get position.

2.2 Implicit Neural Representation for SVR.

The explicit 3D representations are usually limited by fixed shape resolution
or topology. Recently, implicit functions for 3D objects have shown the advan-
tages at representing complicated geometry [4, 40, 41, 14, 22, 17, 12, 26, 2, 9, 27,
29]. ImNet [4] uses an MLP-based neural network to approximate the signed
distance field (SDF) of 3D shapes and shows improved results in contrast to the
explicit surface representations. OccNet [21] generates an implicit volumetric
shape by inferring the probability of each grid cell being occupied or not. The
shape resolution is refined by repeatedly subdividing the interest cells. While
those methods can capture the global shape structure, the geometric details are
usually missing. In addition to the holistic shape description, DISN [40] adds a
local image feature for each 3D point computed by aligning the image to the 3D
shape using an estimated camera pose. With global and local features, DISN re-
covers much better geometric details and outperforms state-of-the-art methods.
The local image feature of each 3D point sampling can be further enriched with
its self-symmetry point, as shown in Ladybird [41]. Compared to Ladybird, we
investigate a more general point structure, the spatial pattern, along with a de-
formable 2D kernel derived from the pattern, to encode geometric relationships
for local image features.

2.3 Deformable Convolutional Networks.

Deformable convolution predicts a dynamic convolutional filter for each feature
position [6]. Compared to locally connected convolutions, deformable convolu-
tion enables the exploration of non-local contextual information. The idea was
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Fig. 2. The overview of our method. Given an image, our network predicts the signed
distance field (SDF) for the underlying 3D object. To predict the SDF value for each
point p, besides utilizing the global feature encoded from the image and the point
feature directly inferred from p, local image features are fully exploited. Particularly,
the local feature of a 3D point is encoded with a kernel in the image space whose
kernel points are derived from a spatial pattern. *, © and ⊕ denote convolution,
concatenation, and sum operations respectively.

originally proposed for image processing and then extended for learning features
from natural language [31], 3D point cloud [35, 32] and depth images [25]. In
contrast to existing deformable kernels that generate kernel points within a ‘sin-
gle’ domain, the proposed 2D deformable kernel is manipulated by a 3D spatial
pattern generator, interacting between the 3D space and the 2D image plane.

3 Method

3.1 Overview

Given an RGB image of an object, our goal is to reconstruct the complete 3D
shape of the object with high-quality geometric details. We use signed distance
fields (SDF) to represent the 3D objects and approximate the SDFs with a
neural network. Our network takes 3D points p = (x, y, z) ∈ R3 and an image
I as input and outputs the signed distance s at each input location. With an
SDF, the surface of an object can be extracted as the isosurface of SDF (·) = 0
through the Marching Cubes algorithm. In general, our network consists of a fully
convolutional image encoder m and a continuous implicit function f represented
as multi-layer perceptrons (MLPs), from which the SDF is generated as

f(p, Fl(a), Fg) = s, s ∈ R, (1)

where a = π(p) is the 2D projection for p, Fl(a) = m(I(a)) is the local feature
at image location a, and Fg represents the global image feature. Feature Fl(a)
integrates the multi-scale local image features from the feature maps of m, from
which the local image features are localized by aligning the 3D points to the
image pixels via camera c.

By integrating with a spatial pattern at each 3D point sampling, the feature
Fl(a) of the sampling is modified by the local image features of the pattern
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Fig. 3. Illustration of spatial pattern generator. For an input point sampling, a pattern
is initialized with n points around it, and the offsets of the surrounding points are
predicted by an MLP network. The final pattern is created as the sum of initial points
and the corresponding offsets.

points. We devise a feature encoding kernel h attaching to the image encoder m
to encode a new local image feature from the features extracted from the image
feature map. Then our model is reformulated as

f(p, h(Fl(a), Fl(a1), ..., Fl(an)), Fg) = s, (2)

where pixels a1, ...an are the 2D projections of the 3D points p1, ..., pn belonging
to the spatial pattern of the point sampling p. The encoding kernel h is an MLP
network that fuses the local image features. n is the number of the pattern points.
Points p1, ..., pn are generated by a spatial pattern generator which is addressed
in the following subsection.

In general, our pipeline is designed to achieve better exploitation of contex-
tual information from local image features extracted according to the predicted
3D spatial patterns, resulting in geometry-sensitive image feature descriptions
for 3D point samplings, ultimately improving the 3D reconstruction from single-
view images. A schematic illustration of the proposed model is given in Figure 2.

3.2 Spatial Pattern Generator

Our spatial pattern generator takes as input a 3D point sampling p, and outputs
n 3D coordinates, i.e., p1, ..., pn. Like previous 2D or 3D deformable convolution
networks [6, 32], the position of a pattern point is computed as the sum of the
initial location and a predicted offset. A schematic illustration of the spatial
pattern generator is shown in Figure 3.

Initialization. With proper initialization, the pattern can be learned efficiently
and is highly effective for geometric reasoning. We consider two different sam-
pling methods for spatial pattern initialization, i.e, uniform and non-uniform 3D
point samplings, as shown in Figure 4. For simplicity, the input shapes are nor-
malized to a unified cube centered at the origin. To generate uniform patterns,
we uniformly sample n points along input point p = (x, y, z). For example, we
place a cube centered at p with the edge length of l, where each pattern point lies
at the center of one of its side faces. We set n = 6 and l = 0.2, then each pattern
points pi can be written as the combinations of pi = (x± 0.1, y ± 0.1, z ± 0.1).
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Fig. 4. Examples of spatial pattern initialization obtained by non-uniform sampling
(I) and uniform sampling (II) strategies. In (I), a non-uniform pattern is formed by 3D
points (in black) that are symmetry to input point p along x, y, z axis, and xy, yz, xz
planes; and in (II), a uniform pattern is created by 3D points ling at centers of the side
faces of a cube centered at point p.

Unlike the uniform sampling method, the non-uniform sampling method
does not have commonly used strategies, except for random sampling. Ran-
domly sampled points always do not have intuitive geometric
meaning and are hardly appeared in any kernel point selec-
tion methods. As to capture non-local geometric relations, the
non-uniform pattern points of p are created at the xy, yz, xz
planes that pass through p. For instance, at xy plane, the non-
uniform pattern expands at locations (−x, y, z), (x,−y, z) and
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, zyx,

, zyx,-

- , zyx,--

xy Plane

(−x,−y, z), as shown in the figure. More pattern points are created in the same
way in yz, xz planes. Thus the pattern points pi can be drawn from the combi-
nations of pi = (±x,±y,±z).

After initialization, the pattern points, along with input sampling, are passed
to an MLP network to generate the offsets and the final pattern is the sum of the
initial positions and the predicted offsets. By projecting the 3D spatial pattern
to the 2D image plane, we obtain a set of 2D pixels as their corresponding 2D
pattern, which is the 2D kernel point. These image features derived from such a
2D kernel imply geometry relations.

3.3 Optimization.

Given a collection of 3D shapes and the generated implicit fields from images I,
the loss is defined with L1 distance:

LSDF =
∑
I∈I

∑
p

ω|f(p, F I
l , F

I
g )− SDF I(p)|, (3)

where SDF I denotes the ground truth SDF value corresponding to image I and
f(·) is the predicted field. ω is set to ω1, if SDF I(p) < δ, and ω2, otherwise. In
practice, the parameters are set to ω1 = 4, ω2 = 1, and δ = 0.01.
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4 Experiments

In this section, we show qualitative and quantitative results on single-view 3D
reconstruction from our method and comparisons with state-of-the-art meth-
ods. We also conduct a study on the variants of spatial patterns to understand
the effect of initialization and the number of points. We further investigate the
effectiveness of individual points in the spatial pattern with visualization and
statistics results.

4.1 Experimental Details

Network Structure. The full network structure is shown in Figure 2. We use
DISN [40] as our backbone network, which consists of a VGG-style fully convo-
lutional neural network m as the image encoder. m has six convolutional layers
with the dimension of {64, 128, 256, 512, 512, 512}. The spatial pattern generator
is a MLPs, six layers with {64, 256, 512, 512, 256, 3} channels, ReLU activation
and Tanh on output. Implicit function is also a MLPs, six layers with {64, 256,
512, 512, 256, 1} channels, ReLU activation. The feature aggregation module is
a one-layer MLP directly mapping multiple local features to the output.

Dataset and Training Details. We use the ShapeNet Core dataset [3] and
Pix3D dataset [28] for evaluation. The ShapeNet Core dataset [3] includes 13
object categories, and for each object, 24 views are rendered with resolution of
137×137 as in [5]. Pix3D Dataset [28] contains 9 object categories with real-
world images and the exact mask images. The number of views and the image
resolution varies from different shapes. We process all the shapes and images in
the same format for the two datasets. Specifically, all shapes are normalized to
the range of [-1,1] and all images are scaled to the resolution of 137×137.

In testing, for the ShapeNet dataset, the camera parameters are estimated
from the input images, and we use the trained camera model from DISN [40] for
fair comparisons. For the Pix3D dataset, ground truth camera parameters and
image masks are used.

3D Point Sampling. For each shape, 2048 points are sampled for training. We
first normalize the shapes to a unified cube with their centers of mass at the ori-
gin. Then we uniformly sample 2563 grid points from the cube and compute the
sign distance field (SDF) values for all the grid samples. Following the sampling
process of Ladybird [41], the 2563 points are downsampled with two stages. In
the first stage, 32,768 points are randomly sampled from the four SDF ranges
[-0.10,-0.03], [-0.03,0.00], [0.00,0.03], and [0.03,0.10], with the same probabilities.
In the second stage, 2048 points are uniformly sampled from the 32,768 points
using the farthest points sampling strategy.

In testing, 653 grid points are sampled are fed to the network, and output the
SDF values. The object mesh is extracted as the zero iso-surface of the generated
SDF using the Marching Cube algorithm.
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3D-to-2D Camera Projection. Projecting 3D point sampling p to a pixel
a is unfolded into two stages. Firstly, the point is converted from the world
coordinate system to the local camera coordinate system c based on the rigid
transformation matrix Ac, such that pc = Acp. Then in the camera space, point
pc = (xc, yc, zc) is projected to the 2D canvas via perspective transformation,
i.e., π(pc) = (x

c

zc ,
yc

zc ). The projected pixel whose coordinate lies out of an image
will reset to 0 or 136 (the input image resolution is fixed as 137×137 in our
experiment).

Traning Policy. We implement our method based on the framework of Pytorch.
For training on the ShapeNet dataset, we use the Adam optimizer with a learning
rate of 1e-4, a decay rate of 0.9, and a decay step size of 5 epochs. The network is
trained for 30 epochs with a batch size of 20. For training on the Pix3D dataset,
we use the Adam optimizer with a constant learning rate 1e-4 and a smaller
batch size of 5. For the ShapeNet dataset, at each epoch, we randomly sample a
subset of images from each category. Specifically, a maximum number of 36000
images are sampled for each category. The total number of images in an epoch is
411,384 resulting in 20,570 iterations. Our model is trained across all categories.

Evaluation Metrics. The quantitative results are obtained by computing the
similarity between generated surfaces and ground truth surfaces. We use the
standard metrics including Chamfer Distance (CD), Earth Mover’s Distance
(EMD), and Intersection over Union (IoU).

Table 1. Quantitative results on the ShapeNet Core dataset for various methods.

Metrics Methods plane bench cabinet car chair display lamp speaker rifle sofa table phone watercraft mean

CD↓

Pixel2Mesh 6.10 6.20 12.11 13.45 11.13 6.39 31.41 14.52 4.51 6.54 15.61 6.04 12.66 11.28
OccNet 7.70 6.43 9.36 5.26 7.67 7.54 26.46 17.30 4.86 6.72 10.57 7.17 9.09 9.70
DISN 9.96 8.98 10.19 5.39 7.71 10.23 25.76 17.90 5.58 9.16 13.59 6.40 11.91 10.98
Ladybird 5.85 6.12 9.10 5.13 7.08 8.23 21.46 14.75 5.53 6.78 9.97 5.06 6.71 8.60
Ourscam 5.40 5.59 8.43 5.01 6.17 8.54 14.96 14.07 3.82 6.70 8.97 5.42 6.19 7.64
Ours 3.27 3.38 6.88 3.93 4.40 5.40 6.77 8.48 1.58 4.38 6.49 4.02 4.01 4.85

EMD↓

Pixel2Mesh 2.98 2.58 3.44 3.43 3.52 2.92 5.15 3.56 3.04 2.70 3.52 2.66 3.94 3.34
OccNet 2.75 2.43 3.05 2.56 2.70 2.58 3.96 3.46 2.27 2.35 2.83 2.27 2.57 2.75
DISN 2.67 2.48 3.04 2.67 2.67 2.73 4.38 3.47 2.30 2.62 3.11 2.06 2.77 2.84
Ladybird 2.48 2.29 3.03 2.65 2.60 2.61 4.20 3.32 2.22 2.42 2.82 2.06 2.46 2.71
Ourscam 2.35 2.15 2.90 2.66 2.49 2.49 3.59 3.20 2.04 2.40 2.70 2.05 2.40 2.57
Ours 1.91 1.90 2.58 2.36 2.17 2.08 2.66 2.75 1.52 2.11 2.36 1.77 1.99 2.17

IoU↑

Pixel2Mesh 51.5 40.7 43.4 50.1 40.2 55.9 29.1 52.3 50.9 60.0 31.2 69.4 40.1 47.3
OccNet 54.7 45.2 73.2 73.1 50.2 47.9 37.0 65.3 45.8 67.1 50.6 70.9 52.1 56.4
DISN 57.5 52.9 52.3 74.3 54.3 56.4 34.7 54.9 59.2 65.9 47.9 72.9 55.9 57.0
Ladybird 60.0 53.4 50.8 74.5 55.3 57.8 36.2 55.6 61.0 68.5 48.6 73.6 61.3 58.2
Ourscam 60.6 54.4 52.9 74.7 56.0 59.2 38.3 56.1 62.9 68.8 49.3 74.7 60.6 59.1
Ours 68.2 63.1 61.4 80.7 66.8 67.9 55.9 65.0 75.0 75.2 62.6 81.0 68.9 68.6

4.2 Quantitative and Qualitative Comparisons

We compare our method with the state-of-the-art methods on the single-image
3D reconstruction task. All the methods, including Pixel2Mesh [33], OccNet [21],
DISN [40], Ladybird [41], are trained across all 13 categories. The method of
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Table 2. Quantitative results on Pix3D dataset.

Categories CD(x1000)↓ EMD(x100)↓ IoU(%)↑
Ladybird Ours Ladybird Ours Ladybird Ours

bed 9.84 8.76 2.80 2.70 70.7 73.2
bookcase 10.94 14.70 2.91 3.32 44.3 41.8
chair 14.05 9.81 2.82 2.72 57.3 57.3
desk 18.87 15.38 3.18 2.91 51.2 60.7
misc 36.77 30.94 4.45 4.00 29.8 44.0
sofa 4.56 3.77 2.02 1.92 86.7 87.6
table 21.66 14.04 2.96 2.78 56.9 58.8
tool 7.78 16.24 3.70 3.57 41.3 38.2
wardrobe 4.80 5.60 1.92 2.01 87.5 87.5
mean 14.36 13.25 2.97 2.88 58.4 61.0

Ours uses ground truth cameras while Ourscam denotes the version of Ours
using estimated camera poses.

A quantitative evaluation of the ShapeNet dataset is reported in Table 1 in
terms of CD, EMD, and IoU. CD and EMD are evaluated on the sampling points
from the generated triangulated mesh. IoU is computed on the solid voxelization
of the mesh. In general, our method outperforms other methods. In particular,
among DISN, Ladybird, and Ours, which share a similar backbone network,
Ours achieves much better performance.

In Figure 9, we show qualitative results generated by Mesh R-CNN [8], Oc-
cNet [21], DISN [40] and Ladybird [41]. We use the pre-trained models from
the Mesh R-CNN, OccNet, and DISN. For Ladybird, we re-implement their net-
work and carry out training according to the specifications in their paper. All
the methods can capture the general structure of the shapes. Shapes generated
from DISN, Ladybird, and Ours are more aligned with the ground truth shapes.
Specifically, our method is visually better at the non-visible regions and fine-scale
geometry features.

The quantitative evaluation of the Pix3D dataset is provided in Table 2.
Ours and Ladybird are both trained and evaluated on the same train/test split,
during which ground truth camera poses and masks are used. Specifically, 80%
of the images are randomly sampled from the dataset for training while the rest
images are used for testing. In general, our method outperforms Ladybird on the
used metrics. Note that Ladybird already outperforms the other methods shown
in Table 1, we only give the results of Ladybird and Ours.

In addition to the quantitative results, we also show the reconstructed shapes
in Figure 5. Compared to the synthetic images from the ShapeNet dataset, the
real images are more diverse in terms of camera viewpoints, object sizes, and
appearances. Our reconstructed shapes are visually more plausible compared to
Ladybird.

4.3 Impact of Spatial Patterns

To figure out the influence of different spatial patterns, we designed several
variants of the pattern. Specifically, two factors are considered, including the
initialization and the capacity, i.e., the pattern point sampling strategy and the
number of points in a pattern. As described before, we consider non-uniform
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Fig. 5. Qualitative Results on the Pix3D dataset. Ground truth image masks and
camera parameters are used.

and uniform sampling methods for pattern initialization and set the number of
points to three and six. The variants derived from the combinations of those two
factors are denoted as

– Oursuniform−6p, in which six points are uniformly sampled on a cube cen-
tered at point sampling, such that p1 = (x, y, z+0.1), p2 = (x+0.1, y, z), p3 =
(x, y+0.1, z), p4 = (x, y, z−0.1), p5 = (x−0.1, y, z), and p6 = (x, y−0.1, z).

– Oursnon−uni−6p, in which six points are non-uniformly sampled at the sym-
metry locations in the shape space along xy, yz and xz planes and x, y
and z axes, such that p1 = (x, y,−z), p2 = (−x, y, z), p3 = (x,−y, z),
p4 = (−x,−y, z), p5 = (x,−y,−z), and p6 = (−x, y,−z).

– Oursnon−uni−3p, in which three points are non-uniformly sampled at the
symmetry locations in the shape space along xy, yz and xz planes, such that
p1 = (x, y,−z), p2 = (−x, y, z), and p3 = (x,−y, z).

In Table 3, we report the numerical results of the methods using ground truth
camera pose. In general, Oursnon−uni−6p achieves best performance. By reducing
the capacity to the number of three points, the performance decreases, as shown
by Oursnon−uni−3p. It indicates that some critical points in Oursnon−uni−6p
that have high responses to the query point do not appear in Oursnon−uni−3p.
Notably, the sampling strategy is more important. Both Oursnon−uni−6p and
Oursnon−uni−3p outperforms Oursuniform−6p with large margins. Thus, initial-
ization with non-uniform sampling makes the learning of effective spatial pat-
terns easier. It implies that optimizing the pattern position in the continuous
3D space is challenging, and with proper initialization, spatial patterns can be
learned more efficiently. To better understand the learned spatial pattern and
which pattern points are preferred by the network, we provide analysis with
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Table 3. Quantitative results of the variants of our method using different configura-
tions of spatial pattern. Metrics include CD (multiply by 1000, the smaller the better),
EMD (multiply by 100, the smaller the better), and IoU (%, the larger the better). CD
and EMD are computed on 2048 points.

Metrics Methods plane bench cabinet car chair display lamp speaker rifle sofa table phone watercraft mean

CD↓
Oursuniform−6p 3.72 3.73 7.09 3.93 4.59 4.78 7.77 9.19 2.02 4.64 6.71 3.62 4.17 5.07
Oursnon−uni−6p 3.27 3.38 6.88 3.93 4.40 5.40 6.77 8.48 1.58 4.38 6.49 4.02 4.01 4.85
Oursnon−uni−3p 3.33 3.51 6.88 3.87 4.38 4.58 7.22 8.76 3.00 4.45 6.66 3.63 4.11 4.95

EMD↓
Oursuniform−6p 2.07 2.02 2.60 2.38 2.19 2.11 2.86 2.85 1.55 2.16 2.41 1.78 2.01 2.23
Oursnon−uni−6p 1.91 1.90 2.58 2.36 2.17 2.08 2.66 2.75 1.52 2.11 2.36 1.77 1.99 2.17
Oursnon−uni−3p 1.96 1.94 2.58 2.35 2.16 2.07 2.81 2.81 1.58 2.13 2.39 1.78 2.00 2.20

IoU↑
Oursuniform−6p 66.1 59.5 59.6 80.0 65.8 66.7 53.8 63.7 74.7 74.1 60.8 79.6 68.0 67.1
Oursnon−uni−6p 68.2 63.1 61.4 80.7 66.8 67.9 55.9 65.0 75.0 75.2 62.6 81.0 68.9 68.6
Oursnon−uni−3p 67.4 62.0 60.5 80.5 66.8 67.5 54.1 64.2 73.6 75.1 61.8 80.2 68.7 67.9

visualization and statistics in the next section. Before that, we evaluate the per-
formance of our method by comparing it with several state-of-the-art methods.
Specifically, we use Oursnon−uni−6p as our final method.

4.4 Analysis of Learned Spatial Patterns

We have demonstrated the effectiveness of the proposed spatial pattern via
achieving better performance than other alternatives, and the experiments on
different variants of the spatial pattern show the influence of initialization and
capacity. To better understand the importance of individual pattern points, we
visualize several learned patterns in Figure 6&7 and calculate the mean offsets
of the predicted pattern points visualized in Figure 8.

In Figure 6, we show learned spatial patterns in the 2D image plane. In each
row, a spatial pattern is shown in six different images with different views. It
implies an explicit constraint on view consistency of image encoding.

Fig. 6. Visualization of learned spatial patterns in image plane.
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Pattern points (colored in red) that have intuitive geometric relationships
(e.g., symmetric and co-planar) with the query points (colored in green) are
highlighted by cyan circles in Figure 6. Figure 7 provides a better visualization
in 3D frame, from which we can see that some learned pattern points from the
non-uniform initialization are almost stationary, e.g., points p1, p2 and p6 that are
highlighted by dash circles. Also, as shown in Figure 8, the mean offsets of points
p1, p2 and p6 are close to zero. To figure out the importance of these stationary
pattern points, we train the network using the points p1, p2, and p6 as a spatial
pattern and keep their positions fixed during training. As shown in Table 4,
the performance of the selected rigid pattern is better than Oursnon−uni−3p and
Oursuniform−6p and slightly lower than Oursnon−uni−6p. This reveals that the
pattern points discovered by the network are useful, which finally leads to a
better reconstruction of the underlying geometry.

Fig. 7. Visualization of spatial pattern points with different shapes and colors. From
the examples in (I) and (II), the learned pattern points (i.e., pink cones) from the non-
uniform initialization (i.e., pink balls) are relative stationery, while points (i.e., blue
cones) learned from uniform initialization (i.e., blue balls) have much larger deviations
from their original positions. Some stationary points p1, p2 and p6 are highlighted in
dash circles. (Zoom in for better visualization)

Even though consuming more time and memory, utilizing the auxiliary con-
textual information brought by other points p3, p4, and p5 only achieve a slight
improvement in the performance. The analysis shows that naive selection of more
neighboring points is not as effective as the strategy that considers the underly-
ing geometric relationships. Although there is no explicit constraint to guarantee
the geometric relations exactly, statistically we found that the network tends to
shift the pattern points towards the locations that have geometric relations with
the query point, as shown in 7&8. It further proves that encoding geometric
relationships with the 2D kernel derived from the proposed spatial pattern are
effective for the single-image 3D reconstruction task.
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Fig. 8. Statistics on the offsets of spatial pattern points. The offset of individual pattern
points is computed as the mean distance between the initial and predicted position.
Among all points, p1, p2 and p6 have the smallest learned offsets from the non-uniform
initialization (i.e., pink bars), while for uniform initialization (i.e., blue bars), all the
predicted points have much larger deviations from their original locations.

Table 4. Quantitative results of a rigid spatial pattern formed by three pattern points
selected from the stationary points of the learned spatial pattern.

plane bench cabinet car chair display lamp speaker rifle sofa table phone watercraft mean
CD(x1000) 3.38 3.44 7.06 3.87 4.50 4.57 7.30 8.98 1.66 4.53 6.61 3.45 4.17 4.89
EMD(x100) 1.97 1.92 2.58 2.37 2.16 2.07 2.77 2.82 1.52 2.12 2.35 1.80 2.01 2.19
IoU(%) 67.4 62.8 60.5 80.5 66.6 67.4 54.9 64.5 74.9 75.0 62.5 80.1 68.5 68.1

5 Conclusion And Future Work

In this paper, we propose a new neural network that integrates a new feature en-
coding scheme to the deep implicit surface network for 3D shape reconstruction
from single images. We present spatial patterns to allow the 2D kernel to encode
local image features with geometric relations. Using spatial pattern enables the
2D kernel point selection explicitly to consider the underlying 3D geometry re-
lations, which are essential in the 3D reconstruction task, while traditional 2D
kernels mainly consider the appearance information. To better understand the
spatial pattern, we study several variants of spatial pattern designs regarding the
pattern capacity and the way of initialization, and we analyze the importance of
individual pattern points. Results on large synthetic and real datasets show the
superiority of the proposed method on widely used metrics.

A key limitation is that the model is sensitive to camera parameters. As
shown in Table 1, when using ground truth camera parameters, the performance
is significantly improved. One possible direction to investigate is to incorporate
the camera estimation process in the loop of the 3D reconstruction pipeline, such
as jointly optimizing the camera pose and the implicit field within a framework
with multiple objectives. Another interesting direction is to learn geometric re-
lations with explicit geometric constraints. Restricting the optimization to an
optimized subspace could potentially promote performance and interpretation
of learned patterns.
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Fig. 9. Qualitative comparison results for various methods.
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