
Computational Visual Media
DOI 10.1007/s41095-016-0071-3

Research Article

Feature-aligned segmentation using correlation clustering

Yixin Zhuang1 (�), Hang Dou2, Nathan Carr3, and Tao Ju2 (�)

c© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We present an algorithm for segmenting a
mesh into patches whose boundaries are aligned with
prominent ridge and valley lines of the shape. Our
key insight is that this problem can be formulated
as correlation clustering (CC), a graph partitioning
problem originating from the data mining community.
The formulation lends two unique advantages to our
method over existing segmentation methods. First,
since CC is non-parametric, our method has few
parameters to tune. Second, as CC is governed by edge
weights in the graph, our method offers users direct
and local control over the segmentation result. Our
technical contributions include the construction of the
weighted graph on which CC is defined, a strategy for
rapidly computing CC on this graph, and an interactive
tool for editing the segmentation. Our experiments
show that our method produces qualitatively better
segmentations than existing methods on a wide range
of inputs.

Keywords mesh segmentation; correlation clustering
(CC); feature lines

1 Introduction

Surface segmentation is one of the fundamental
problems in geometry processing. A semantically
meaningful segmentation has important applications
in parameterization, texturing, and shape matching.

1 National Digital Switching System Engineering &
Technological Research Center, Zhengzhou, 450001,
China. E-mail: yixin.zhuang@gmail.com (�).

2 Washington University in St. Louis, St. Louis, 63130,
USA. E-mail: H. Dou, hangdou@gmail.com; T. Ju,
taoju@cse.wustl.edu (�).

3 Adobe, San Francisco, 94103, USA. E-mail:
ncarr@adobe.com.

Manuscript received: 2016-08-24; accepted: 2016-12-22

For many real-world objects, particularly man-made
shapes, their semantics are well captured by line-
type features, particularly ridges and valleys [1]. As
a result, it is natural to require that the segmentation
of such objects should align with their feature
lines. Feature-aligned segmentation has enabled
applications such as shape abstraction [2, 3] and
interactive wire-based deformation [4].

Despite extensive research into segmentation, few
works have specifically addressed feature-aligned
segmentation. Patch-based segmentation methods
are mostly concerned with finding patches that meet
certain regularity criteria, such as being well-fit by
primitives or having homogeneous curvature. While
the resulting patch boundaries often coincide with
feature lines, it is common for these methods to
ignore prominent feature lines or create redundant
patches within featureless regions (Figs. 1(b) and
1(c). Only a few methods explicitly aim to preserve a
given set of feature lines as the patch boundaries [7,
8]. However, they all rely on heuristics that involve
multiple parameters. We have found that in practice
it is often difficult, if not impossible, to find the right
parameter values to keep salient features without
adding redundant boundaries in featureless regions
(Fig. 1(d)).

We propose a new method for feature-aligned
segmentation. We explicitly formulate as the goal
to include as many prominent feature lines and as
few weak feature or non-feature lines as possible,
as patch boundaries. This is a classical graph
partitioning problem known as correlation clustering
(CC) [9]. A distinctive property of CC is that
it is able to automatically recover the number of
clusters. This is achieved by associating graph edges
with signed weights. We show how feature-aligned
mesh segmentation can be cast as a CC problem
by defining an appropriate weighted graph on the

1

2 Y. Zhuang, H. Dou, N. Carr, et al.

Fig. 1 Comparisons of patch-based segmentation of (a) the Rocker-
arm created by (b) the primitive-fitting method of Yan et al. [5],
(c) the region-growing method of Nieser et al. [6], (d) the curvature-
similarity guided method of Mitani and Suzuki [7] obtained from the
ridge (red) and valley (blue) lines in (a), and (e) our method (with α =
0.6), using the same set of feature lines. Note that existing methods
often miss prominent features (see blue boxes) or produce too many
segments in featureless regions (see red boxes). Our method captures
the majority of the prominent features without creating redundant
segments.

mesh. In addition, we show how state-of-the-art
solvers for CC can be significantly sped up in our
problem setting, with little loss of accuracy, by pre-
computing an oversegmentation of the mesh guided
by our graph weights.

We have observed in extensive experiments that
our segmentation method outperforms existing
methods in maximizing inclusion of prominent
feature lines while avoiding redundant patches in
featureless regions (Fig. 1(e)). Moreover, the CC
formulation and our efficient solver enable intuitive
editing interfaces where the user can locally refine or
coarsen the segmentation with instant feedback.

Although CC has been used for related problems
including image segmentation and part-based mesh
segmentation [10], it has not been used for feature-
aligned mesh segmentation. We make the following
three technical contributions:
• We formulate feature-aligned segmentation in

terms of CC. In particular, we design graph

weights such that the cluster boundaries of CC
are made up of salient feature lines connected by
shape-following paths (see Section 3.2).
• We give an efficient CC algorithm based on pre-

computing an oversegmentation from the feature
lines. We show that our oversegmentation, which
is tailored to our graph, yields quantitatively
better results than existing oversegmentations (see
Section 3.3).
• We provide an interactive interface for modifying

the segmentation that benefits from our CC
formulation and the efficiency of our algorithm
(Section 4).

2 Related work

2.1 Surface segmentation

We briefly cover the extensive research on this topic,
with an emphasis on its ability to produce feature-
aligned segmentations. We refer readers to excellent
surveys [11, 12] for more in-depth discussions of these
and other works.

Segmentation methods generally fall into two
camps, being either part-based or patch-based. The
first camp aims to partition a solid object into
volumetric components. They utilize part-aware
shape descriptors such as concavity of the cuts [13,
14], convexity [15, 16] of parts, compactness [17]
of parts, a shape diameter function [18], or a
combination of these [19, 20]. More sophisticated
descriptors can be learned from a collection of
shapes [21].

The second camp of methods, to which our
method belongs, offers a more detailed partitioning
of the surface. For our purpose, we classify patch-
based segmentation methods into implicit and
explicit schemes. Implicit schemes seek patches that
satisfy certain regularity conditions. Ideally, the
feature lines emerge implicitly as the boundaries of
the patches. The regularity condition can be low
approximation error by an analytical primitive [5,
22–25], developability [26, 27], or similarity using a
variety of shape descriptors, including curvature [6,
28–31], normal voting tensor [32], slippage [33], and
diffusion-type distances to a set of seed locations [34,
35]. However, implicit methods can oversegment
surface regions that are void of prominent feature
lines, if the region fails the regularity conditions.

Feature-aligned segmentation using correlation clustering 3

For example, the region could assume a shape
more general than the space of allowed primitives
or exhibit significant variation of curvature due to
noise (as in the red boxes in Figs. 1(b) and 1(c)).
Moreover, a prominent feature line can be missed in
the segmentation, if the feature line is surrounded
by a region of surface with homogenuous appearance
(as in the blue boxes in Figs. 1(b) and 1(c)).

Explicit schemes start from a given set of
feature lines and seek to create patches that
are bounded by strong features. Existing explicit
methods [7, 8, 36] start by pruning away weak
feature lines. Afterwards, Lévy et al. [36] as well
as Mitani and Suzuki [7] consider the watershed
of the distance function from the pruned feature
lines and merge small patches, while Cao et
al. [8] directly extend and connect pruned feature
lines. Both methods are based on heuristics that
are controlled by several thresholds. While these
methods have been successful for noise-free CAD
objects, we have found that it is often difficult, if
not impossible, to find suitable thresholds that create
satisfactory segmentations for more general shapes
(see Fig. 1(d)). Also, note that the curve networks
produced by the feature extension method of Ref. [8]
(without the subsequent stage of refinement) are not
guaranteed to yield a segmentation of the surface.
For example, a closed curve on a high-genus surface
does not necessarily partition the surface into two
patches.

Our segmentation method follows an explicit
scheme. Compared to implicit methods, our method
specifically addresses the goal of including prominent
feature lines while avoiding weak feature lines or
non-feature lines. In contrast to existing explicit
methods [7, 8, 36], our method rests upon a clear
mathematical formulation (correlation clustering).
The formulation allows us to perform both feature
pruning and connection in a single step, thereby
reducing the number of parameters to be tuned (our
method has a single parameter α that controls the
edge weights). The formulation additionally provides
a natural means of local control by modifying the
edge weights in the graph, which we build upon in
our interactive tool.

2.2 Correlation clustering

Correlation clustering (CC) was first introduced
by Bansal et al. [9] as a non-parametric graph

partitioning method. In the general setting, we are
given a weighted undirected graph G = {V,E,w}
with nodes V , edges E, and real-valued edge weights
w : E → R. The weight of an edge can be positive or
negative, indicating that the two nodes connected
by the edge are similar or dissimilar. The goal
is to cluster similar nodes together while placing
dissimilar nodes in different clusters. Specifically,
we seek a labeling of the nodes, L : V → Z, that
minimizes the total weights over all cut edges, those
edges that connect nodes with different labels. That
is, we seek:

arg min
L

 ∑
e∈C(L)

w(e)

 (1)

where C(L) is the set of cut edges associated with
the labeling L:

C(L) = {e = {i, j} ∈ E | L(i) 6= L(j)} (2)
What sets CC apart from other popular clustering

problems, such as normalized cuts and k-means
clustering, is that the solution of CC automatically
recovers the number of optimal clusters. Note
that the cut C(L) necessarily includes as many
negatively weighted edges and as few positively
weighted edges as possible. This prevents the result
from degenerating to a single cluster (as such a cut
uses no negative edges) or |V | clusters (as such a
cut includes all positive edges). CC has found uses
in problems involving unknown and possibly large
number of clusters, such as entity deduplication [37],
community detection in social networks [38], gene
clustering [39], and image segmentation [10, 40–43].

To formulate a clustering problem in terms of CC,
the key challenge is designing edge weights. For
image segmentation, impressive results have been
obtained by weights defined by the local image
intensity and learned from a database of ground
truth annotations [44]. Keuper et al. [10] formulated
part-based mesh segmentation in terms of CC. Their
weights are built upon primarily part-aware shape
descriptors, such as the shape diameter function and
dihedral angles. In this paper, we propose a new
set of weights tailored for patch-based segmentation,
guided by feature lines.

Solving CC is NP-hard [9]. Approximate solvers
either solve a sequence of linear programs [9, 45] or
make greedy changes to an initial clustering [10, 46–
48]. The latter seems to have the best efficiency
at present for large and sparse graphs [10].

4 Y. Zhuang, H. Dou, N. Carr, et al.

Further acceleration by parallelization has also been
explored [49, 50]. However, we have found that
even the fastest (serial) CC solver cannot run at
interactive speed on our graphs (taking over 10 s
for a mesh with 200k faces). Interactive response
is critical if we want users to be able to quickly
explore different parameter values or perform local
edits on the segmentation. In this paper, we show
that existing CC solvers can be made much faster,
with little loss in optimality, by running on an
oversegmentation of the mesh pre-computed from the
feature lines.

3 Method

3.1 Overview

We consider a triangular mesh (with or without
boundary) and a given set of ridge and valley lines
on the mesh. Our goal is to connect salient ridges
and valleys with shape-following paths to yield a
segmentation of the mesh.

A variety of methods exist to compute ridge and
valley lines. We use the method of Yoshizawa et
al. [51] due to its robustness. Like many other
feature line algorithms, each feature line produced by
Yoshizawa et al.’s method is represented by feature
points lying on triangle edges that are connected
by feature segments inside triangles. We call those
triangle edges that contain feature points feature
edges. See Fig. 2(a).

To formulate the segmentation problem in terms
of graph labeling, we have the options of either
labeling the triangles or labeling the vertices. Since
the feature lines cut across triangles and edges,
vertex labeling is a natural choice in our setting.
We arrive at the following graph formulation of our
problem: given a graph G whose nodes V and edges

Fig. 2 Naming for (a) feature lines and (b) the dual structure.

E are respectively the mesh vertices and edges, find a
vertex labeling L whose cut C(L) (defined in Eq. (2))
uses as many salient feature edges and as few other
edges (i.e., weak feature edges and non-feature edges)
as possible. This closely resembles the objective of
CC mentioned earlier, which is to maximize negative
edges and minimize positive edges on the cut.

Our method proceeds in three steps as illustrated
in Fig. 3:
• Define suitable edge weights w on G (see

Fig. 3(b)).
• Solve CC on G giving a vertex labeling L. The

initial patch boundaries are formed by the dual of
the cut edges associated with L (see Fig. 3(c)).
• Smooth the patch boundaries (see Fig. 3(d)).

We next detail the first and second steps, which are
our novel contributions. The third step is commonly
used to post-process segmentations. We use the
iterative energy minimization method of Ref. [6],
but other smoothing strategies such as the one in
Ref. [34] can also achieve visually similar results.

3.2 Defining the weights

To cast our problem in terms of CC, we need to
determine weights on the graph edges such that:
• Salient feature edges have negative weights; the

more salient the feature, the more negative the
edge weight should be.
• Non-salient feature edges, as well as non-feature

edges, have positive weights; the more likely that
the two vertices connected by the edge belong to
the same patch, the more positive the edge weight
should be.
To consistently define positive and negative

weights that meet the two criteria above, we set the
weight w(e) of every edge e ∈ E to

w(e) = Similarity(e)− αe Award(e) (3)
Here, Similarity(e) is a positive scalar that measures
the likelihood that the two vertices connected by e

belong to the same patch. Note that we use the
same quantity to measure the saliency of a feature
edge: the lower Similarity(e), the more salient the
feature line cutting across the edge e is. Award(e) is
a positive scalar used to create negative weights for
feature edges, and the negativity is controlled by a
per-edge parameter αe. We set αe = 0 for all non-
feature edges e to enforce positivity of w(e). In the
automatic mode of our algorithm, we set αe = α for
all feature edge e where α is a user-defined constant.

Feature-aligned segmentation using correlation clustering 5

Fig. 3 Main steps of our algorithm. (a) A torus mesh and feature lines (blue) made up of segments interior to triangles. (b) The weighted
graph, where negative weights are colored from light blue (small magnitude) to dark blue (large magnitude) and positive weights are colored
from light yellow (small magnitude) to red (large magnitude). (c) CC result, with patch boundaries given by the dual segments to the cut
edges. (d) Smoothed patched boundaries.

In an interactive session, the user can modify this
parameter for individual edges to achieve localized
edits (see Section 5).

Our definition of the two measures, Similarity
and Award, is inspired by recent work on
interactive segmentation based on anisotropic
geodesic paths [52]. The key observation there is that
a good segmentation boundary often goes through
an anisotropic region (where the minimum and
maximum curvature magnitudes differ significantly)
and follows the minimum curvature direction. The
authors introduced an anisotropic metric under
which curves appear shorter when they are better
aligned with the minimum curvature directions and
traveling through more anisotropic regions.

We use a similar anisotropic metric and set
Similarity(e) to be the length of a dual segment of
edge e under this metric. Intuitively, a dual segment
represents a piece of the potential segmentation
boundary between the two end vertices of e. The
shorter the dual segment in the anisotropic metric,
the more likely that the two vertices of e can be
separated by a good segmentation boundary, and
hence the lower Similarity(e). Award(e) is simply set
as the length of the dual segment under the regular
Euclidean metric. In short, w(e) is the weighted
difference between the length of the dual segment
of e in the anisotropic metric and the Euclidean
metric. The two measures, Similarity and Award,
are visualized on the Rocker-arm model in Fig. 4
(left). Observe that the former gives notably low
values near salient features, while the latter merely
reflects the Euclidean length of the dual segments of

the edges.
We now define in detail Similarity and Award.

For completeness, we briefly review the anisotropic
metric in Ref. [52]. Given a smooth surface S, a
metric can be represented as a symmetric 2×2 tensor
Mx at each point x ∈ S. The length of a tangent
vector v at x in this metric is

dMx(v) =
√
vTMxv (4)

The maximum (minimum) value of dMx(v) is
√
λ1‖v‖

(
√
λ2‖v‖), where λ1 > λ2 are the eigenvalues

of Mx; they are realized when v is aligned with
the corresponding eigenvector e1 (e2). As a special
case, the standard Euclidean metric is achieved by
setting Mx to an identity matrix. Let κ1, κ2 be
the maximum and minimum curvatures at x, such
that ‖κ1‖ > ‖κ2‖, and u1, u2 be the corresponding
curvature directions. The anisotropic metric in
Ref. [52] is represented by a tensor Mx whose
eigenvectors {e1, e2} are aligned with {u1, u2} and
whose eigenvalues are

λ1 = 1 + γ sx, λ2 = 1
1 + γ sx

(5)

where sx = ‖κ1‖ − ‖κ2‖ and γ is a global constant.
Recall that our edge weight is the difference

between the lengths in the anisotropic metric and
the Euclidean metric. To make the two quantities
comparable, we modify the metric of Ref. [52] so
that the maximal length of a tangent vector v in
the anisotropic metric,

√
λ1‖v‖, is upper bounded

by the length of v in the Euclidean metric, ‖v‖. As
in Ref. [52], the eigenvectors {e1, e2} of our tensor
Mx are aligned with {u1, u2}, but its eigenvalues
become:

6 Y. Zhuang, H. Dou, N. Carr, et al.

Fig. 4 Left: the two measures, Similarity and Award, on all edges. Right-top: the edge weights, w, as the difference between Similarity and
α ∗ Award with increasing values of α. Right-bottom: the corresponding results of CC (after boundary smoothing).

λ1 = 1, λ2 = 1
(1 + γ sx)2 (6)

We use γ = 0.05 in all our experiments.
Given a discrete mesh, we define a per-triangle

anisotropic tensor from locally estimated curvature
and curve directions. We create a dual vertex for
each triangle located at the triangle centroid, if none
of the three edges is a feature edge, or at the centroid
of the feature points otherwise. The dual segment of
a triangle edge e is a straight segment connecting
two dual vertices. This dual structure is illustrated
in Fig. 2(b). We evaluate Similarity(e) as the length
of the dual segment of e in the anisotropic metric
and Award(e) as the length in the Euclidean metric.
This is done by first projecting the dual segment
onto the supporting plane of each of the two triangles
sharing e and then taking the average of the lengths
evaluated in the chosen metric on those triangles
(using Eq. (4)).

The global constant α, to which αe is set in
Eq. (3) for all feature edges, controls the negativity
of the graph weight w, which in turn governs
the granularity of the segmentation. This is the
only global parameter in our formulation. Figure 4
visualizes the graph weight for increasing values of
α (top) and the results of CC (bottom). Observe
that as the number of negatively weighted edges
and the magnitude of their weights increase, the

segmentation becomes more refined. Also note that
there is a fairly wide range of α values in this
example (from 0.5 to 1.1) for which the resulting
segmentations appear similar and plausible. The
same observation can be made in many of our test
examples.

3.3 Solving CC

Efficiently solving CC on large graphs remains
a challenging task. Drawing inspirations from
applications of CC in image segmentation [10, 40–
42], our method solves CC on a much smaller, pre-
computed graph that still captures the essence of the
input mesh and features.

The basic idea is to first define an initial labeling
L′ of the original graph G, and then solve CC on
a simplified graph G′ created by merging vertices
of G with the same label. The weight of an edge
connecting two nodes, s and t, of G′ is the sum
of the weights of those edges in G connecting two
nodes that are merged respectively into s and t.
Intuitively, vertices and edges of G′ represent the
patches and boundaries in an oversegmentation of
the mesh. Solving CC on G′ yields a labeling L

on the original graph G, which effectively merges
smaller patches of the oversegmentation into bigger
patches.

While this is similar to the bottom-up clustering
strategy commonly seen in mesh segmentation [11],

Feature-aligned segmentation using correlation clustering 7

the key difference is that CC is non-parametric. As
a result, the merging process requires no ad-hoc
termination criteria of the kind needed in previous
clustering-based segmentation methods, such as
the number of clusters, the area of the patches,
thresholds on the segmentation energy, etc.

The key challenge is to find an initial labeling L′

so that the induced graph G′ is simple enough on one
hand, and on the other hand, the resulting labeling
L is as close as possible to that obtained by running
CC directly on the original graph G. The latter
requires L′ to assign different labels to two vertices
if they are likely to belong to different patches in
the desired segmentation. A conservative approach
would be to ask all feature edges to be included in
the cut edges associated with L′. Intuitively, we seek
an oversegmentation that includes all input feature
lines as patch boundaries.

Our method for computing the oversegmentation
builds upon previous works [7, 36], which extract
the watershed of the geodesic distance function from
the feature lines. This approach is simple and fast.
Moreover, the watershed can effectively bridge the
gap between nearby feature lines. However, due
to the nature of geodesic distance propagation, the
watershed may fail to bridge feature lines that are
further apart. Such failure, in turn, results in
suboptimal final labeling L after running CC on the

simplified graph G′. An example is given in Fig. 5:
the watershed (b) fails to connect two ridge lines on
a curved ridge that are separated by a long gap (a),
as the close-up views highlight. As a result, the final
segmentation misses a portion of the ridge (c).

To create an oversegmentation that better
connects features, we replace the geodesic distance
field by the anisotropic distance measured in our
anisotropic metric (see previous section). Intuitively,
distance propagates more slowly along more salient
features in the anisotropic metric, which allows
the watershed to connect far-apart feature lines
as if they were near-by (see Fig. 5(d)). Compared
with the geodesic watershed [7, 36], computing CC
on our anisotropic watershed results in not only
qualitatively better boundaries (see Fig. 5(e)) but
also lower cut costs (see the quantitative analysis
in Section 5). The latter are due to the fact that
the anisotropic distance field is propagated using
precisely the edge weights w defined in the original
graph G (Eq. (3)), which allows the watershed
to naturally cut through graph edges with lower
weights.

We now detail the oversegmentation process.
To perform distance propagation and extract the
watershed, we consider the same dual graph of the
triangles as that used for defining the edge weights
in G (see Fig. 2(b)). Each dual segment of a triangle

Fig. 5 Comparison of (b) the geodesic distance function and (d) our anisotropic distance function, overlayed by their watersheds, from an
initial set of feature lines (a). The final segmentations computed by running CC on the respective watersheds are shown (after boundary
smoothing) in (c) and (e). Note in the close-up views that segmentation using the geodesic watershed fails to bridge two ridge features, which
are connected in the segmentation using our anisotropic watershed.

8 Y. Zhuang, H. Dou, N. Carr, et al.

edge e is assigned the length Similarity(e) (see
previous subsection). To start distance propagation,
we assign a value of zero to the dual vertex of any
triangle that contains some feature edge. The value
at any other dual vertex is the shortest distance
on the dual graph to any zero-valued dual vertices.
We then negate all distance values at the dual
vertices and compute the watershed on the dual
graph using the immersion algorithm from Ref. [53].
The result is a labeling of dual vertices (and in turn,
their corresponding triangles) as either watershed or
belonging to a particular basin. Finally, we label
each triangle vertex using the majority label of the
basin triangles in its 1-ring neighborhood.

Note that the oversegmentation, and in turn the
simplified graph G′, need only to be computed once
for a given mesh and feature set. Changing the
parameter αe in our graph weight definition only
affects the edge weighting on G′. This is the key that
allows our algorithm to offer rapid feedback during
interactive editing.

4 Interaction

Segmentation is an inherently subjective task:
the criteria for a good segmentation are highly
dependent on both the user and the target
application. A key benefit of our CC formulation
is that, by modifying the edge weights in the
graph, the user has direct and local control of
the segmentation result. To free the user from the
tedious task of manipulating edge weights, we have
developed several intuitive interactions that allow
the user to change the granularity of segmentation
(globally or locally) and fine-tune the segmentation
boundaries. Thanks to our fast CC algorithm, most
of these interactions offer interactive response time
(i.e., tens of milliseconds). The only exception is
feature sketching, which requires re-computing the
oversegmentation.

4.1 Global refinement/coarsening

Recall that, by default, αe = 0 for all non-feature
edges e and αe = α for all feature edges; α is a global
constant. Increasing or decreasing α results in a finer
or coarser segmentation for the entire model.

4.2 Local refinement/coarsening

The user can select a region-of-interest (ROI)

and increment or decrement the parameter αe for
all edges within that ROI. This results in local
refinement or coarsening of the segmentation. Two
such edits are illustrated on the Moai model in Fig. 6.
They result in a finer segmentation on the face but
a coarser one on the body.

4.3 Feature sketching

The user may sketch over the surface to indicate an
intended boundary. This is useful when the desired
boundary does not lie on a salient feature. For
example, the “cross”-shaped sketch in Fig. 7(b) lies
in a rather flat region that has no feature lines. We
add all triangle edges that intersect the user sketch
to the set of feature edges. These newly added
feature edges are associated with a large αe (we use
1.0) to ensure their inclusion in the segmentation.
For efficiency, we only update the oversegmentation
within those patches in the current segmentation
that contain the sketch.

Fig. 6 Interactively refinement (from (b) to (c)) and coarsening
(from (c) to (d)) of the segmentation. The user-selected regions are
shown in gray in (b) and (c, top), and their updated segmentations
are outlined in (c) and (d, top). The corresponding graph weights are
shown at the bottom. Note that a refinement operation (increasing
αe) results in increased negativity of feature edges (c, bottom), while
coarsening (decreasing αe) results in increased positivity (d, bottom).

Feature-aligned segmentation using correlation clustering 9

Fig. 7 Sketching new feature curves (b, bottom) in a featureless
region (a, bottom) results in modified segmentation boundaries (c).

5 Results

Here we perform both quantitative and qualitative
analysis of our method. All results in this section
are produced automatically without user interaction
(other than specifying the global parameter α). As
mentioned earlier, we use Ref. [51] to obtain the
ridge and valley lines as input to our method. To
compute CC on the watershed oversegmentation, we
employ the lifted multi-cut method (LMP) [10] which
is currently the fastest serial solver on large sparse
graphs. We use their GAEC+KLj option without
adding long-range edges to the graph.

5.1 Evaluation of CC solver

We first compare the performance of computing CC
on the original mesh graph G versus computing
it on the simplified graph G′ from the watershed
oversegmentation. We took the hard disk model
(see the bottom of Fig. 10), which contains roughly
200k triangles, and explored a range of α values.
As shown in Fig. 8(top), while running LMP on
the original graph can take over 10 s for some α

values (red curve), running the same solver on the
oversegmentation, including the time for computing
the oversegmentation, takes about 1 s for all α

values (cyan curve). More importantly, the time
taken to only run LMP, given a pre-computed
oversegmentation, is merely tens of milliseconds
(magenta curve). All experiments were performed
on a PC with a 3.7 GHz CPU and 16 GB of memory.

Fig. 8 Runtime (top) and cut cost (bottom) for the hard disk model,
as a function of α.

We next evaluate the loss in segmentation quality
incurred by our speed-up. To do so, we examine
the cut cost, measured by the total weights of the
cut edges (Eq. (1)), by running LMP on the original
graph, on the watershed oversegmentation based on
geodesic distances [7, 36], and on our anisotropic
watershed. As shown in Fig. 8(bottom), the cut
cost of the three variants are similar across all
values of α, which validates the use of our speed-up
strategy. Furthermore, note that the cut cost using
our anisotropic watershed is constantly lower than
that using the geodesic watershed [7, 36].

5.2 Sensitivity to input

Unlike previous segmentation methods that also
utilize feature lines [7, 8, 36], our method requires no
pruning of features. Instead, selection and connection
of features are handled simultaneously in the CC
formulation. Our method is rather insensitive to

10 Y. Zhuang, H. Dou, N. Carr, et al.

the input set of feature lines, whether it has been
pruned or not (see Fig. 9(left)). The overall structure
of the segmentation remains stable even after the
shape is contaminated by noise, which results in
a significantly different set of feature lines (see
Fig. 9(right)).

5.3 Comparisons and examples

We next compare our method with other patch-
based segmentations using more examples, in Fig. 10.
As observed earlier in Fig. 1, primitive-fitting [5]
and region-growing [6] tend to create additional
boundaries in featureless regions where there is large
fitting error or variation in curvature. On the other
hand, prominent feature lines lying in homogeneous
regions may be ignored. In contrast, our method
excels at preserving the salient features while
avoiding adding non-feature boundaries. Although
both our method and that of Mitani and Suzuki [7]
work by merging a watershed oversegmentation, ours
is guided by the CC formulation which has only
one parameter. On the other hand, Mitani and
Suzuki use a heuristic merging process with an
area-based termination criterion. Even with our
best efforts to tune this termination criterion, their

Fig. 9 Comparing segmentation results of our method (bottom)
given different input sets of feature lines (top) on the original and
perturbed shapes.

Fig. 10 Comparison of the primitive-fitting method of Yan et al. [5],
the region-growing method of Nieser et al. [6], the feature-guided
method of Mitani and Suzuki [7], and our method, on three examples.

method produces much less satisfactory results: the
segmentations tend to miss important, fine features
and include many weak feature lines in the patch
boundaries.

Finally, we showcase a variety of examples in
Fig. 11, obtained by our automatic method. Note
that these results were all obtained using values
of α within a small range (0.5 to 1.0). Please
refer to the accompanying video in the Electronic
Supplementary Material for 3D views of these
results.

6 Limitations and conclusions

6.1 Limitations

Our method is suited to objects that are well-
represented by their ridge and valley lines. It may
not produce meaningful results for organic shapes,

Feature-aligned segmentation using correlation clustering 11

Fig. 11 Further segmentation results of our method, showing feature lines (top) and patches (bottom).

Fig. 12 Results of our method on two organic shapes.

whose semantics are primarily captured by parts
instead of patches (two examples are shown in
Fig. 12). For these shapes, part-based segmentations
would be more suitable. Our method considers only
the property of the segmentation boundary (i.e.,
feature saliency). It would be interesting to explore
how information from the patch interior, such as
regularity of curvature and fitting error of primitives,
could be incorporated into our method. Another
interesting question is whether global constraints,
such as symmetry, can be added to our formulation
to produce more pleasing results.
6.2 Conclusions

We have presented a novel method for segmenting
a mesh into patches whose boundaries are aligned

with salient features. By formulating the problem
in terms of correlation clustering, a non-parametric
graph partitioning problem, our method is simple
to implement, easy to tune (with a single global
parameter), efficient to interact with, and more
effective than previous methods in producing
feature-aligned segmentations.

Acknowledgements

We thank Dongming Yan for providing the code
from Ref. [5] for comparison. The models in this
paper were obtained from AIM@SHAPE and
Princeton Segmentation Benchmark. The work was
supported in part by a gift from Adobe System, Inc.

Electronic Supplementary Material Supplementary
material is available in the online version of this article at
http://dx.doi.org/10.1007/s41095-016-0071-3.

References

[1] Cole, F.; Sanik, K.; DeCarlo, D.; Finkelstein, A.;
Funkhouser, T.; Rusinkiewicz, S.; Singh, M. How well
do line drawings depict shape? ACM Transactions on
Graphics Vol. 28, No. 3, Article No. 28, 2009.

[2] Mehra, R.; Zhou, Q.; Long, J.; Sheffer, A.; Gooch,
A. A.; Mitra, N. J. Abstraction of man-made shapes.
ACM Transactions on Graphics Vol. 28, No. 5, Article
No. 137, 2009.

[3] Gehre, A.; Lim, I.; Kobbelt, L. Adapting feature curve
networks to a prescribed scale. Computer Graphics
Forum Vol. 35, No. 2, 319–330, 2016.

[4] Gal, R.; Sorkine, O.; Mitra, N. J.; Cohen-Or,
D. iWIRES: An analyze-and-edit approach to shape
manipulation. ACM Transactions on Graphics Vol. 28,
No. 3, Article No. 33, 2009.

[5] Yan, D.-M.; Wang, W.; Liu, Y.; Yang, Z.

12 Y. Zhuang, H. Dou, N. Carr, et al.

Variational mesh segmentation via quadric surface
fitting. Computer-Aided Design Vol. 44, No. 11, 1072–
1082, 2012.

[6] Nieser, M.; Schulz, C.; Polthier, K. Patch layout from
feature graphs. Computer-Aided Design Vol. 42, No. 3,
213–220, 2010.

[7] Mitani, J.; Suzuki, H. Making papercraft toys from
meshes using strip-based approximate unfolding. ACM
Transactions on Graphics Vol. 23, No. 3, 259–263,
2004.

[8] Cao, Y.; Yan, D.-M.; Wonka, P. Patch layout
generation by detecting feature networks. Computers
& Graphics Vol. 46, 275–282, 2015.

[9] Bansal, N.; Blum, A.; Chawla, S. Correlation
clustering. Machine Learning Vol. 56, No. 1, 89–113,
2004.

[10] Keuper, M.; Levinkov, E.; Bonneel, N.; Lavoue, G.;
Brox, T.; Andres, B. Efficient decomposition of image
and mesh graphs by lifted multicuts. In: Proceedings
of the IEEE International Conference on Computer
Vision, 1751–1759, 2015.

[11] Shamir, A. A survey on mesh segmentation techniques.
Computer Graphics Forum Vol. 27, No. 6, 1539–1556,
2008.

[12] Attene, M.; Katz, S.; Mortara, M.; Patane, G.;
Spagnuolo, M.; Tal, A. Mesh segmentation—A
comparative study. In: Proceedings of the IEEE
International Conference on Shape Modeling and
Applications, 7, 2006.

[13] Katz, S.; Tal, A. Hierarchical mesh decomposition
using fuzzy clustering and cuts. ACM Transactions on
Graphics Vol. 22, No. 3, 954–961, 2003.

[14] Au, O. K.-C.; Zheng, Y.; Chen, M.; Xu, P.; Tai, C.-L.
Mesh segmentation with concavity-aware fields. IEEE
Transactions on Visualization and Computer Graphics
Vol. 18, No. 7, 1125–1134, 2012.

[15] Lien, J.-M.; Amato, N. M. Approximate convex
decomposition of polyhedra and its applications.
Computer Aided Geometric Design Vol. 25, No. 7, 503–
522, 2008.

[16] Asafi, S.; Goren, A.; Cohen-Or, D. Weak convex
decomposition by lines-of-sight. Computer Graphics
Forum Vol. 32, No. 5, 23–31, 2013.

[17] Fan, R.; Jin, X.; Wang, C. C. L. Multiregion
segmentation based on compact shape prior. IEEE
Transactions on Automation Science and Engineering
Vol. 12, No. 3, 1047–1058, 2015.

[18] Shapira, L.; Shamir, A.; Cohen-Or, D. Consistent
mesh partitioning and skeletonisation using the shape
diameter function. The Visual Computer Vol. 24, No.
4, 249–259, 2008.

[19] Zhang, H.; Liu, R. Mesh segmentation via recursive
and visually salient spectral cuts. In: Proceedings of
Vision, Modeling, and Visualization, 429–436, 2005.

[20] Lee, Y.; Lee, S.; Shamir, A.; Cohen-Or, D.; Seidel, H.-
P. Mesh scissoring with minima rule and part salience.
Computer Aided Geometric Design Vol. 22, No. 5, 444–
465, 2005.

[21] Kalogerakis, E.; Hertzmann, A.; Singh, K.
Learning 3D mesh segmentation and labeling.
ACM Transactions on Graphics Vol. 29, No. 4, Article
No. 102, 2010.

[22] Cohen-Steiner, D.; Alliez, P.; Desbrun, M. Variational
shape approximation. ACM Transactions on Graphics
Vol. 23, No. 3, 905–914, 2004.

[23] Wu, J.; Kobbelt, L. Structure recovery via hybrid
variational surface approximation. Computer Graphics
Forum Vol. 24, No. 3, 277–284, 2005.

[24] Attene, M.; Falcidieno, B.; Spagnuolo, M. Hierarchical
mesh segmentation based on fitting primitives. The
Visual Computer Vol. 22, No. 3, 181–193, 2006.

[25] Zhang, H.; Li, C.; Gao, L.; Wang, G. Hierarchical
mesh segmentation based on quadric surface fitting.
In: Proceedings of the 14th International Conference
on Computer-Aided Design and Computer Graphics
(CAD/Graphics), 33–40, 2015.

[26] Julius, D.; Kraevoy, V.; Sheffer, A. D-charts: Quasi-
developablemesh segmentation. Computer Graphics
Forum Vol. 24, No. 3, 581–590, 2005.

[27] Wang, C. Computing length-preserved free boundary
for quasi-developable mesh segmentation. IEEE
Transactions on Visualization and Computer Graphics
Vol. 14, No. 1, 25–36, 2008.

[28] Mangan, A. P.; Whitaker, R. T. Partitioning 3D
surface meshes using watershed segmentation. IEEE
Transactions on Visualization and Computer Graphics
Vol. 5, No. 4, 308–321, 1999.

[29] Sun, Y.; Paik, J. K.; Koschan, A. F.; Page, D.
L.; Abidi, M. A. Triangle mesh-based edge detection
and its application to surface segmentation and
adaptive surface smoothing. In: Proceedings of the
International Conference on Image Processing, Vol. 3,
825–828, 2002.

[30] Razdan, A.; Bae, M. A hybrid approach to feature
segmentation of triangle meshes. Computer-Aided
Design Vol. 35, No. 9, 783–789, 2003.

[31] Lavoue, G.; Dupont, F.; Baskurt, A. A new CAD
mesh segmentation method, based on curvature tensor
analysis. Computer-Aided Design Vol. 37, No. 10, 975–
987, 2005.

[32] Kim, H. S.; Choi, H. K.; Lee, K. H. Feature detection
of triangular meshes based on tensor voting theory.
Computer-Aided Design Vol. 41, No. 1, 47–58, 2009.

[33] Gelfand, N.; Guibas, L. J. Shape segmentation
using local slippage analysis. In: Proceedings of
the Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing, 214–223, 2004.

[34] Lai, Y.-K.; Hu, S.-M.; Martin, R. R.; Rosin, P. L.
Rapid and effective segmentation of 3D models using
random walks. Computer Aided Geometric Design Vol.
26, No. 6, 665–679, 2008.

[35] Wang, S.; Hou, T.; Li, S.; Su, Z.; Qin, H.
Anisotropic elliptic PDEs for feature classification.
IEEE Transactions on Visualization and Computer
Graphics Vol. 19, No. 10, 1606–1618, 2013.

[36] Lévy, B.; Petitjean, S.; Ray, N.; Maillot, J. Least
squares conformal maps for automatic texture atlas

Feature-aligned segmentation using correlation clustering 13

generation. ACM Transactions on Graphics Vol. 21,
No. 3, 362–371, 2002.

[37] Arasu, A.; Ré, C.; Suciu, D. Large-scale deduplication
with constraints using dedupalog. In: Proceedings
of the IEEE 25th International Conference on Data
Engineering, 952–963, 2009.

[38] Yang, B.; Cheung, W. K.; Liu, J. Community mining
from signed social networks. IEEE Transactions on
Knowledge and Data Engineering Vol. 19, No. 10,
1333–1348, 2007.

[39] Ben-Dor, A.; Shamir, R.; Yakhin, Z. Clustering gene
expression patterns. Journal of Computational Biology
Vol. 6, Nos. 3–4, 281–297, 2004.

[40] Kim, S.; Nowozin, S.; Kohli, P.; Yoo, C. D. Higher-
order correlation clustering for image segmentation.
In: Proceedings of Advances in Neural Information
Processing Systems, 1530–1538, 2011.

[41] Yarkony, J.; Ihler, A. T.; Fowlkes, C. C. Fast
planar correlation clustering for image segmentation.
In: Computer Vision–ECCV 2012. Fitzgibbon, A.;
Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds.
Springer Berlin Heidelberg, 568–581, 2012.

[42] Beier, T.; Kroger, T.; Kappes, J. H.; Kothe,
U.; Hamprecht, F. A. Cut, glue, & cut: A fast,
approximate solver for multicut partitioning. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 73–80, 2014.

[43] Kappes, J. H.; Swoboda, P.; Savchynskyy, B.; Hazan,
T.; Schnörr, C. Probabilistic correlation clustering
and image partitioning using perturbed multicuts. In:
Scale Space and Variational Methods in Computer
Vision. Aujol, J.-F.; Nikolova, M.; Papadakis, N. Eds.
Springer International Publishing, 231–242, 2015.

[44] Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik,
J. Contour detection and hierarchical image
segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence Vol. 33, No. 5,
898–916, 2011.

[45] Demaine, E. D.; Emanuel, D.; Fiat, A.; Immorlica,
N. Correlation clustering in general weighted graphs.
Theoretical Computer Science Vol. 361, Nos. 2–3, 172–
187, 2006.

[46] Ailon, N.; Charikar, M.; Newman, A. Aggregating
inconsistent information: Ranking and clustering.
Journal of the ACM Vol. 55, No. 5, Article No. 23,
2008.

[47] Bagon, S.; Galun, M. Large scale correlation clustering
optimization. arXiv preprint arXiv:1112.2903, 2011.

[48] Lingas, A.; Persson, M.; Sledneu, D. Iterative merging
heuristics for correlation clustering. International
Journal of Metaheuristics Vol. 3, No. 2, 105–117, 2014.

[49] Chierichetti, F.; Dalvi, N.; Kumar, R. Correlation
clustering in MapReduce. In: Proceedings of the
20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 641–650,
2014.

[50] Pan, X.; Papailiopoulos, D. S.; Oymak, S.; Recht, B.;

Ramchandran, K.; Jordan, M. I. Parallel correlation
clustering on big graphs. In: Proceedings of Advances
in Neural Information Processing Systems, 82–90,
2015.

[51] Yoshizawa, S.; Belyaev, A.; Seidel, H.-P. Fast
and robust detection of crest lines on meshes. In:
Proceedings of the ACM Symposium on Solid and
Physical Modeling, 227–232, 2005.

[52] Zhuang, Y.; Zou, M.; Carr, N.; Ju, T. Anisotropic
geodesics for live-wire mesh segmentation. Computer
Graphics Forum Vol. 33, No. 7, 111–120, 2014.

[53] Vincent, L.; Soille, P. Watersheds in digital spaces:
An efficient algorithm based on immersion simulations.
IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. 13, No. 6, 583–598, 1991.

Yixin Zhuang is an assistant
researcher in the National Digital
Switching System Engineering &
Technological Research Center, China.
He obtained his B.S. degree from
Nanjing University of Aeronautics and
Astronautics in 2008, and both M.S.
and Ph.D. degrees from the National

University of Defense Technology in 2011 and 2015,
respectively. His research interests include computer
graphics, and geometric modeling and processing.

Hang Dou studied computer science
as an undergraduate in Zhejiang
University, China, where he received
his B.A. degree in 2010. He received
his M.S. degree in computer science
from the University of Iowa in 2013.
He is currently a Ph.D. student in the
Computer Science and Engineering

Department in Washington University in St. Louis,
USA. His primary research area is computer graphics,
with particular interests in mesh processing, shape
understanding, and fast rendering.

Nathan Carr is a principal scientist
in Adobe Research leading a team of
graphics researchers. He obtained his
B. S. degree from the College of William
& Mary, M.S. degree from Washington
State University, and Ph.D. degree
from the University of Illinois Urbana-
Champaign. Since joining Adobe, he has

produced numerous features for Adobe’s flagship products
including Photoshop and Illustrator. The technologies
span the domains of 3D photorealistic rendering, image
processing, geometric modeling, and 3D printing. Nathan
has authored dozens of academic papers and continues to
guide research and development at Adobe.

14 Y. Zhuang, H. Dou, N. Carr, et al.

Tao Ju is a professor in the Department
of Computer Science and Engineering
in Washington University in St. Louis,
USA. He obtained his B.S. and B.A.
degrees from Tsinghua University,
China, in 2000, and his Ph.D. degree in
computer science from Rice University
in 2005. His research interests include

computer graphics, geometry processing, and applications
to biomedicine. He has received a number of grants from
NSF and NIH, including an NSF CAREER Award. He has
served as an associate editor for IEEE Transactions on
Visualization and Computer Graphics, Computer Graphics
Forum, Computer-Aided Design, Graphical Models, and
Computational Visual Media.

Open Access The articles published in this journal
are distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the
original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were
made.

Other papers from this open access journal are available free
of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

