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Abstract Surface remeshing is widely required
in modeling, animation, simulation, and many
other computer graphics applications. Improving the
elements’ quality is a challenging task in surface
remeshing. Existing methods often fail to efficiently
remove poor-quality elements especially in regions with
sharp features. In this paper, we propose and use
a robust segmentation method followed by remeshing
the segmented mesh. Mesh segmentation is initiated
using an existing Live-wire interaction approach and
is further refined using local mesh operations. The
refined segmented mesh is finally sent to the remeshing
pipeline, in which each mesh segment is remeshed
independently. An experimental study compares our
mesh segmentation method as well as remeshing results
with representative existing methods. We demonstrate
that the proposed segmentation method is robust and
suitable for remeshing.

Keywords mesh generation; mesh segmentation;
surface remeshing; triangulation

1 Introduction
In computer graphics, surface meshes are typically
used for shape representation. However, these meshes
are frequently generated in raw form, and as a result
contain poor-quality elements. Furthermore, meshes
generated, e.g., from the output of automated laser
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scanning, are prone to errors. Such raw meshes are
difficult to use directly in downstream applications.
Thus, remeshing is useful at this stage to improve
mesh quality [1].

A critical target for surface remeshing is feature
preservation. Feature analysis and identification
remain challenging problems because a rigorous
definition of features for general objects is lacking
despite extensive studies on these topics. In many
remeshing algorithms, a user-given feature skeleton
is required as an input for use in feature preservation
[2, 3]. Several approaches include efficient feature
functions for implicit feature preservation [4, 5].
These approaches can efficiently handle models,
such as CAD models and man-made objects with
clearly defined features, or models without minimal
local features. Standard approaches still cannot
automatically handle models with thin and sharp
features.

Input meshes are typically segmented before
remeshing to address the problem caused by thin
and sharp features [2, 6]. Segmentation boundaries
should split such thin and sharp regions into
patches. Then, each patch is remeshed independently
and they are finally stitched together. Two main
problems, segmentation and stitching, must be solved
in this type of approach. Automatic algorithms
perform segmentation by grouping triangles, and the
segmentation boundaries are defined by original edges
of the input. Such boundaries are irregular if the
input mesh quality is low, also affecting the final
stitched result.

This study aims to improve the segmentation
and remeshing outputs yet with minimal user
input. The proposed method operates in two
phases, mesh segmentation and surface remeshing.
The segmentation method is based on active user
interaction. The input mesh is segmented according
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to user-guided segmentation boundaries or curves.
The segmentation boundaries are drawn by the user
using Live-wire [7], which is especially useful for
sharp-featured models. Live-wire is only used for
drawing boundaries, and the mesh is segmented using
the proposed method. The triangles touching the
user-guided segmentation curves are processed with
basic operations, including vertex relocation, edge
flipping, edge splitting, edge collapsing, and face
labeling. These operations are iterated until a robust
segmentation is reached. Constraints are applied
to avoid small triangles and prevent mesh structure
destruction. Thus, we achieve a segmented mesh with
only minor changes to the complexity, quality, and
structure of the input mesh. The main contributions
of this study are as follows:
• a robust segmentation mechanism that divides

an input mesh following user-guided segmentation
boundaries;

• a method of producing a segmented mesh with
minor (negligible) changes in complexity and
structure to the input mesh, which does not
introduce small angles near the segmentation
curves, thus providing a meaningful and more
suitable segmentation for surface remeshing;

• a segment-based surface remeshing method with
additional local region operators, which can
generate a high-quality mesh.

2 Related work
The literature provides numerous surface remeshing
methods. For example, representative works include
mesh simplification-based methods [8, 9], advancing-
front-based method [10], Delaunay insertion
methods [11], field-based approaches [12–14], and
mesh optimization with either local operations
[15–18] or global energy minimization. Global
optimization approaches can be further classified as
parametrization-based methods [2, 19, 20], discrete
clustering methods [4], and direct 3D optimization
methods [3, 21–27]. In this section, we briefly review
those remeshing methods most closely related to our
proposed method, focusing on feature preservation.
Alliez et al. [1] present a detailed study on surface
remeshing.

The simplest approach to preserving features
during remeshing is to predefine feature curves,

either by the user or by automatic algorithms (e.g.,
using dihedral angles) [3, 28]. Such a scheme
functions well for models with sharp features, such
as CAD models or man-made objects. However,
this scheme cannot be applied naturally to free-form
objects. Various solutions (e.g., feature-sensitive
remeshing [29], implicit feature preservation [4, 5])
have been proposed to preserve features for general
objects, especially for models with thin and sharp
features. However, these solutions do not always
successfully handle thin and sharp features, such as
the ear of the Elk model.

A consequent remedy is to apply mesh
segmentation prior to remeshing. Segmentation-
based remeshing methods can be classified into
two main types as follows. One type first defines
a coarse mesh (or base mesh) over the input
mesh, through mesh simplification. Then, the base
mesh is mapped back to the original mesh and
further subdivided to form a semi-regular output
mesh [30]. For example, Lee et al. [31] present a
unified subdivision framework to approximate an
arbitrary surface by a displaced subdivision surface.
This scheme is simple but efficient for evaluating
surface properties. However, this method may lose
sharp features and suffer from distortion at times.
Mansouri and Ebrahimnezhad [32] recently present
an alternative curvature-adapted subdivision method,
which achieves better results with lower distortion
error and higher aspect ratios (AR). However,
semi-regular remeshing cannot arbitrarily modify the
mesh connectivity, which constantly causes distortion
in highly curved regions.

The other type of approach first segments the input
mesh into patches. Then, each patch is remeshed
individually, and all the patches are finally stitched
together in a post-processing step. Edwards et
al. [6] use variational shape approximation [33] for
segmentation and centroidal Voronoi tessellation [3]
for remeshing. IsoChart [34], Exoskeleton [35], Live-
wire [7], and patch layout [36] can also be used to
define the feature skeletons of input meshes.

However, the segmentation boundaries are not
sufficiently smooth, especially for inputs with thin and
poor-quality triangles, because most segmentation
algorithms use triangles as primitives for clustering.
Such boundaries lead to low triangle quality in the
output mesh. A survey paper [37] provides additional
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details concerning mesh segmentation. In the present
study, Live-wire [7] is used for initial segmentation
due to its anisotropic nature that automatically
captures thin and sharp features. This is followed
by a refinement step to straighten the segmentation
boundary to improve the remeshing quality after
stitching.

3 Method
3.1 Overview
The pipeline of the proposed algorithm is illustrated
in Fig. 1. The input mesh is provided to Live-
wire [7]; the segmentation curve is generated by
user interaction. This segmentation curve along
with the input mesh is further processed in the
refinement phase. The refinement phase achieves an
acceptably segmented mesh that is provided to the
remeshing process. The remeshing method generates
a high-quality mesh after applying several segment-
based and global operations to the mesh. The two
main steps are further described in the following
subsections.

3.2 Mesh segmentation
Our segmentation method starts with Live-wire [7]
initialization. Live-wire is an efficient technique for
curve drawing and mesh segmentation, especially for
models with thin and sharp features, such as the
lion’s or dog’s ears or the feline’s wings. However, it
creates poor-quality elements (with short edges and
small angles) near the segmentation curve.

We are not concerned with the segmented mesh
produced by Live-wire. Instead, the segmentation

curve is simply plotted over the input mesh. This
curve leads to a similar segmentation to that provided
by Live-wire for faces in the interiors of the segments.
However, faces near the segmentation curve remain
unlabeled—see the blue faces in Fig. 2, which provides
an abstract view of the mesh segmentation for a
simple example. The leftmost and rightmost sub-
figures show the segmented meshes produced by Live-
wire and our method respectively. The central sub-
figure shows the Live-wire curve plotted in red over
the input mesh.

Faces in the interior of the two segments are
labeled in a manner similar to the result produced
by Live-wire. Faces near the segmentation curve
are left unlabeled (blue faces). At this stage, the
curve is only a visualization and is not connected
to the vertices. The unlabeled faces and their
corresponding vertices and edges are processed using
basic operations including vertex translation, edge
flipping, edge splitting, edge collapsing, and face
labeling (see Fig. 1). We now briefly describe each of
these operations.

3.2.1 Vertex translation
In the first step, we move the nearest vertices of the
unlabeled faces to the segmentation curve. A vertex
vi is translatable to the nearest point p on the curve
if and only if satisfies the following conditions:
• Vertex vi is nearest to p among the vertices in its

one-ring neighborhood.
• The distance between vertex vi and point p is

shorter than 40% of the shortest edge length
in the one-ring neighborhood edges of unlabeled
faces of vi. Edges of labeled faces are excluded

Fig. 1 Proposed user-guided segmentation with remeshing. In the basic operations (middle), red lines represent segmentation curves and the
blue color shows unlabeled faces near the curve.
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Fig. 2 Simple example of mesh segmentation. Left: Live-wire
segmentation includes small triangles near the segmentation boundary.
Middle: Live-wire curve (red) plotted over the input mesh; blue
triangles are unlabeled. Right: Our final segmentation.

from consideration. This condition helps to avoid
distortion in the mesh structure and generation of
short edges.

• Vertex vi does not result in small angles (e.g., <

20◦) when translated to p.
Vertices that satisfy these conditions are moved

toward the curve, and the affected unlabeled faces
are labeled according to their neighborhoods.

3.2.2 Face labeling
Face labels determine the segment to which the face
belongs. Face labeling is performed in parallel with
all four other operations. Our main goal is to label
the unlabeled faces in agreement with faces on either
side of the curve. A face that lies completely on one
side of the curve is labeled with the label of the faces
on that side and the face is counted as part of that
segment.

3.2.3 Edge flipping
Edges that cross the segmentation curve are flipped to
join the curve. An edge is flipable if its vertices lie on
opposite sides of the curve (see Fig. 3(left)). The two

Fig. 3 Edge flipping. Red: Segmentation curve. Left: Before flipping.
Yellow edges are flipable. Centre: After flipping. Right: Face labeling
after edge flipping.

faces are labeled accordingly after edge flipping (see
Fig. 3(right)). Flipable edges are typically found after
vertex translation and edge splitting. Edge flipping
is executed whenever a flipable edge is found.
3.2.4 Edge splitting
The previous steps do not suffice to label all faces as
the segmentation curve may cross several non-flipable
edges. Edge splitting is used to address this problem.
Edge splitting may either be simple, as in Fig. 4,
or as complex, as in Fig. 5. In either case, every
second edge is split instead of splitting all edges. In
particular, only one edge split is allowed for a single
triangle. The remaining edges are treated via flipping
and vertex translation. In edge splitting, the edge is
split (see Fig. 4(b), Fig. 5(b)) and the resultant new
vertex is moved to the nearest point on the curve (see
Fig. 5(c)). Edge flipping (Fig. 4(c), Fig. 5(d)) and
face labeling (Fig. 4(d), Fig. 5(e)) are consequently
applied.

3.2.5 Edge collapsing
Edge collapse may result in short edges near the
curve. If small angles are produced (< 20◦), the
opposite edge is collapsed. Edge collapse is usually
executed only once in the last steps of segmentation.
If several edges are collapsed, then the previous
steps are repeated (at least once) and the necessary
operations are performed.

3.2.6 Curve smoothing
Finally, a curve smoothing operation, which attempts
to smooth the curve wherever required, is performed
after all the faces have been labeled.

3.3 Surface remeshing
The next objective is to remesh the surface with
a robust segmented mesh to improve quality. Our
remeshing framework functions in two phases. The
first phase performs segmentation-based remeshing,
while we apply global operations in the second

Fig. 4 Edge splitting (Case I). (a) Before splitting. (b) After splitting. (c) Edge flip. (d) Face labeling.
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Fig. 5 Edge splitting and consecutive operations (Case II). (a) Before splitting. (b) After splitting the middle edge. (c) New vertex translated
to the curve. (d) Edges flipped. (e) Face labeling.

phase and disregard the segmentation boundaries. In
segmentation-based remeshing, the edges and vertices
on the segmentation curve are locked, and each patch
is segmented using an existing method: we use real-
time adaptive remeshing (RAR) [17], selected as it is
comparatively easy to control, simple to implement,
and computationally efficient. RAR uses an adaptive
sizing function L(x) to compute the edge length
L for each edge. Any edge shorter than 4L/5 is
collapsed; any edge longer than 4L/3 is split. The
two operations (edge collapsing and edge splitting)
along with edge flipping for valance optimization and
vertex relocation are repeated; 5–10 times are used
in the original RAR method.

Initially, the mesh quality is improved without
destroying sharp features when the vertices on the
curve are locked. The first phase of segment-based
RAR execution is repeated 10 times to generate
an intermediate mesh. However, this mesh still
has small angles and low-quality elements, so it is
further processed in the second phase. The vertices
on the segmentation boundaries are now unlocked,
and further smoothing operations are applied. Each
triangle with an angle < 30◦ is flagged as a bad
triangle, and vertices of this triangle and in the one-
ring neighborhood of each of its vertices are flagged as
bad vertices; these vertices form a local region around
the bad triangle. In each local region, the bad triangle
is treated with edge-based operations [5], while the
vertices in the local regions are also relocated for
quality improvement. We calculate the new position
pi as the Laplacian center ci of the one ring around vi

when relocating a vertex vi. The vertex is relocated
to pi if it does not lead to bad angles. Otherwise,
the process is repeated with a new value for pi set to
pi = ci +k ·Δd, where d is a small distance calculated
as d = 1, 1/2, 1/4, 1/6, . . . , ε for a tiny value ε, while
k represents the direction (left, right, up, down, etc.)
of vertex movement around ci. Thus, the optimal
position for vertex translation near ci is achieved.

These operations are executed until all small angles
are removed and a mesh with high-quality results.

4 Experiments
4.1 Methodology
In this section, we present experiments performed
to evaluate the proposed method. We compare
our results with those of the other most relevant
segmentation-based methods. We performed the
experiments using an Intel Core i7 at 3.60 GHz with
16 GB RAM and 64-bit Windows 7 operating system.

In the following subsections, we measured the
remeshing quality in terms of Qmin and Qavg, the
minimal and average triangle quality respectively.
For a triangle t, the quality Q(t) is defined as

Q(t) =
6√
3

At

ptht

where At is the area of triangle t, pt is its half-
perimeter, and ht is the length of its longest edge [38].

Similarly, θmin and θmax are the minimum and
maximum angles in the mesh, respectively, while θmin
represents the average of the minimum angle for each
triangle. In addition, we calculated the proportion of
triangles with small angle (< 30◦).

4.2 Segmentation results
We compared our segmentation results with those of
Live-wire segmentation [7] by segmenting five mesh
models with both methods. Figure 6 illustrates the
input and segmented meshes. It shows that no
small angles exist near the segmentation curve in
our results, while Live-wire results do not have this
property. Table 1 summarizes quantitative results.
We first give the number of vertices and other mesh
quality parameters for the input mesh, and then
the same parameters are recorded for the Live-wire
mesh and our output mesh. Our segmentation has a
comparatively minor change in the number of vertices
and other mesh quality parameters.
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Fig. 6 Segmentation results. Left: Live-wire segmentation. A number of small triangles are created near the curve. Middle: Initialization for
our method: Live-wire curve plotted over the input mesh. Blue faces are unlabeled. Right: Our segmentation. These faces become labeled with
a minor change in mesh structure.

Table 1 Quantitative results for mesh segmentation and comparison with Live-wire [7]. Our method creates fewer additional faces with
minimal change to the input mesh quality. #v represents total number of vertices and regular v’s shows percentage of regular vertices

Model Method #v Qmin Qavg θmin θmin θmax θ < 30◦ Regular v’s

Feline
Input 9998 0.0849 0.6952 3.32 37.0 168.6 26.1% 95.4%

Live-wire 11045 0.0010 0.6634 0.04 35.2 179.7 31.4% 88.0%
Ours 10007 0.0348 0.6930 1.20 37.0 172.0 26.4% 95.2%

Lion head
Input 8356 0.1118 0.5985 4.46 30.4 164.7 48.6% 90.6%

Live-wire 9322 0.0005 0.5698 0.02 28.9 179.6 52.1% 82.8%
Ours 8365 0.0041 0.5969 0.14 30.3 172.5 48.6% 90.5%

Dog
Input 18114 0.0078 0.6896 0.28 35.3 178.7 34.2% 98.8%

Live-wire 20287 0.0022 0.6540 0.07 35.9 179.0 39.2% 89.4%
Ours 18123 0.0078 0.6850 0.28 35.1 178.7 34.6% 98.6%

4.3 Remeshing results
We conducted further experiments by remeshing
several models with our own method and the
RAR method [17]. Both methods were used for
uniform and adaptive remeshing. Mesh quality values
were recorded for each experiment. The output

meshes along with the histograms of the frequency
distributions of the aspect ratios (AR) of the triangles
are depicted in Figs. 7 and 8 for uniform and adaptive
meshing respectively. Aspect ratio is widely used in
the literature as a parameter for measuring triangle
quality [39], and is the ratio of the circumradius of a
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Fig. 7 Remeshing results, uniform density. Triangles with small
angle (< 30◦) are shown in red. Left: RAR results. Right: Our
results.

triangle to twice its inradius:

AR =
abc

8(S − a)(S − b)(S − c)
where a, b, and c are the lengths of the triangle’s
edges and S = (a + b + c)/2. The AR for an
equilateral triangle is equal to one; a higher AR
suggests lower triangle quality. Figures 7 and 8 show
that our method significantly improves the ARs of
triangles and mesh structure. Models with sharp
features such as the lion’s ears, in Fig. 7, undergo
considerable improvement.

Quantitative results for uniform remeshing are
given in Table 2; those for adaptive remeshing are in
Table 3. In both cases our results show a significant
improvement in mesh quality.

Fig. 8 Remeshing results, adaptive mesh. Triangles with small angle
(< 30◦) are shown in red. Left: RAR results. Right: Our results.

5 Conclusions and future work
We have proposed a segmentation-based remeshing
framework that obtains a high-quality mesh with
good aspect ratios. Our method works in two steps,
mesh segmentation and remeshing. The segmentation
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Table 2 Comparative remeshing results, uniform density

Model Method #v Qmin Qavg θmin θmin θmax θ < 30◦ ARmax ARavg

Lion head 1
RAR 8356 0.4390 0.8667 21.61 49.17 119.87 0.29% 2.27 1.07
Ours 8356 0.5246 0.8703 30.20 49.48 112.46 0% 1.79 1.06

Lion head 2
RAR 20703 0.4070 0.8677 20.31 49.20 122.44 0.15% 2.50 1.06
Ours 20703 0.4936 0.8744 30.00 49.77 116.35 0% 1.96 1.05

Ell
RAR 19077 0.4858 0.8907 27.26 51.19 116.82 0.03% 1.20 1.05
Ours 19077 0.5440 0.9001 30.01 51.84 109.70 0% 1.69 1.02

Table 3 Comparative remeshing results, adaptive density

Model Method #v Qmin Qavg θmin θmin θmax θ < 30◦ ARmax ARavg

Bunny
RAR 34835 0.3396 0.8675 15.46 48.95 127.46 0.51% 3.17 1.06
Ours 34835 0.5075 0.8754 30.03 49.60 114.53 0% 1.88 1.05

Feline
RAR 9998 0.3834 0.8595 18.95 48.30 124.68 0.64% 2.75 1.07
Ours 9998 0.4918 0.8672 30.06 48.93 116.57 0% 1.96 1.06

Dog
RAR 18114 0.3755 0.8596 18.33 48.37 130.99 0.40% 3.06 1.07
Ours 18114 0.4825 0.8731 30.00 49.45 117.73 0% 2.03 1.06

Blade
RAR 5002 0.3630 0.8453 22.39 47.21 132.50 1.01% 3.24 1.09
Ours 5002 0.6695 0.8841 30.93 50.14 89.96 0% 1.30 1.05

method considers the segmentation curve as a user
input. It generates a segmented mesh with no bad
elements near the segmentation curve and only minor
changes in mesh structure. In future, we will consider
parallelizing of the method. We also hope to improve
mesh quality for non-obtuse remeshing.

Acknowledgements
This work was partially funded by the National
Natural Science Foundation of China (Nos. 61772523,
61372168, 61620106003, and 61331018). The first
author was supported by a Chinese Government
Scholarship.

References

[1] Alliez, P.; Ucelli, G.; Gotsman, C.; Attene, M. Recent
advances in remeshing of surfaces. In: Shape Analysis
and Structuring. Mathematics and Visualization. De
Floriani, L.; Spagnuolo, M. Eds. Springer, Berlin,
Heidelberg, 53–82, 2008.

[2] Alliez, P.; Meyer, M.; Desbrun, M. Interactive geometry
remeshing. ACM Transactions on Graphics Vol. 21, No.
3, 347–354, 2002.
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